ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv3v GIF version

Theorem cbv3v 1732
Description: Rule used to change bound variables, using implicit substitution. Version of cbv3 1730 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbv3v.nf1 𝑦𝜑
cbv3v.nf2 𝑥𝜓
cbv3v.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbv3v (∀𝑥𝜑 → ∀𝑦𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem cbv3v
StepHypRef Expression
1 cbv3v.nf1 . 2 𝑦𝜑
2 cbv3v.nf2 . 2 𝑥𝜓
3 cbv3v.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbv3 1730 1 (∀𝑥𝜑 → ∀𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1341  wnf 1448
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-4 1498  ax-i9 1518  ax-ial 1522
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  cbv1v  1735  cbvalv1  1739
  Copyright terms: Public domain W3C validator