Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbv3v | GIF version |
Description: Rule used to change bound variables, using implicit substitution. Version of cbv3 1735 with a disjoint variable condition. (Contributed by NM, 5-Aug-1993.) (Revised by BJ, 31-May-2019.) |
Ref | Expression |
---|---|
cbv3v.nf1 | ⊢ Ⅎ𝑦𝜑 |
cbv3v.nf2 | ⊢ Ⅎ𝑥𝜓 |
cbv3v.1 | ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) |
Ref | Expression |
---|---|
cbv3v | ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbv3v.nf1 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | cbv3v.nf2 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbv3v.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 → 𝜓)) | |
4 | 1, 2, 3 | cbv3 1735 | 1 ⊢ (∀𝑥𝜑 → ∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1346 Ⅎwnf 1453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-i9 1523 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: cbv1v 1740 cbvalv1 1744 |
Copyright terms: Public domain | W3C validator |