ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvalv1 Unicode version

Theorem cbvalv1 1749
Description: Rule used to change bound variables, using implicit substitution. Version of cbval 1752 with a disjoint variable condition. See cbvalvw 1917 for a version with two disjoint variable conditions, and cbvalv 1915 for another variant. (Contributed by NM, 13-May-1993.) (Revised by BJ, 31-May-2019.)
Hypotheses
Ref Expression
cbvalv1.nf1  |-  F/ y
ph
cbvalv1.nf2  |-  F/ x ps
cbvalv1.1  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
cbvalv1  |-  ( A. x ph  <->  A. y ps )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)    ps( x, y)

Proof of Theorem cbvalv1
StepHypRef Expression
1 cbvalv1.nf1 . . 3  |-  F/ y
ph
2 cbvalv1.nf2 . . 3  |-  F/ x ps
3 cbvalv1.1 . . . 4  |-  ( x  =  y  ->  ( ph 
<->  ps ) )
43biimpd 144 . . 3  |-  ( x  =  y  ->  ( ph  ->  ps ) )
51, 2, 4cbv3v 1742 . 2  |-  ( A. x ph  ->  A. y ps )
63biimprd 158 . . . 4  |-  ( x  =  y  ->  ( ps  ->  ph ) )
76equcoms 1706 . . 3  |-  ( y  =  x  ->  ( ps  ->  ph ) )
82, 1, 7cbv3v 1742 . 2  |-  ( A. y ps  ->  A. x ph )
95, 8impbii 126 1  |-  ( A. x ph  <->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   A.wal 1351   F/wnf 1458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532
This theorem depends on definitions:  df-bi 117  df-nf 1459
This theorem is referenced by:  cbvralfw  2692
  Copyright terms: Public domain W3C validator