ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbv3 Unicode version

Theorem cbv3 1753
Description: Rule used to change bound variables, using implicit substitution. Usage of this theorem is discouraged because proofs are encouraged to use the weaker cbv3v 1755 if possible. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-May-2018.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbv3.1  |-  F/ y
ph
cbv3.2  |-  F/ x ps
cbv3.3  |-  ( x  =  y  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
cbv3  |-  ( A. x ph  ->  A. y ps )

Proof of Theorem cbv3
StepHypRef Expression
1 cbv3.1 . . 3  |-  F/ y
ph
21nfal 1587 . 2  |-  F/ y A. x ph
3 cbv3.2 . . 3  |-  F/ x ps
4 cbv3.3 . . 3  |-  ( x  =  y  ->  ( ph  ->  ps ) )
53, 4spim 1749 . 2  |-  ( A. x ph  ->  ps )
62, 5alrimi 1533 1  |-  ( A. x ph  ->  A. y ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1362   F/wnf 1471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-i9 1541  ax-ial 1545
This theorem depends on definitions:  df-bi 117  df-nf 1472
This theorem is referenced by:  cbv3h  1754  cbv3v  1755  cbv1  1756  mo2n  2070  mo23  2083  setindis  15459  bdsetindis  15461
  Copyright terms: Public domain W3C validator