Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cbvaldva | Unicode version |
Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.) |
Ref | Expression |
---|---|
cbvaldva.1 |
Ref | Expression |
---|---|
cbvaldva |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1516 | . 2 | |
2 | nfvd 1517 | . 2 | |
3 | cbvaldva.1 | . . 3 | |
4 | 3 | ex 114 | . 2 |
5 | 1, 2, 4 | cbvald 1913 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: cbvraldva2 2699 |
Copyright terms: Public domain | W3C validator |