ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvaldva Unicode version

Theorem cbvaldva 1916
Description: Rule used to change the bound variable in a universal quantifier with implicit substitution. Deduction form. (Contributed by David Moews, 1-May-2017.)
Hypothesis
Ref Expression
cbvaldva.1  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
Assertion
Ref Expression
cbvaldva  |-  ( ph  ->  ( A. x ps  <->  A. y ch ) )
Distinct variable groups:    ps, y    ch, x    ph, x    ph, y
Allowed substitution hints:    ps( x)    ch( y)

Proof of Theorem cbvaldva
StepHypRef Expression
1 nfv 1516 . 2  |-  F/ y
ph
2 nfvd 1517 . 2  |-  ( ph  ->  F/ y ps )
3 cbvaldva.1 . . 3  |-  ( (
ph  /\  x  =  y )  ->  ( ps 
<->  ch ) )
43ex 114 . 2  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
51, 2, 4cbvald 1913 1  |-  ( ph  ->  ( A. x ps  <->  A. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523
This theorem depends on definitions:  df-bi 116  df-nf 1449
This theorem is referenced by:  cbvraldva2  2699
  Copyright terms: Public domain W3C validator