ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cbvexd Unicode version

Theorem cbvexd 1927
Description: Deduction used to change bound variables, using implicit substitution, particularly useful in conjunction with dvelim 2017. (Contributed by NM, 2-Jan-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof rewritten by Jim Kingdon, 10-Jun-2018.)
Hypotheses
Ref Expression
cbvexd.1  |-  F/ y
ph
cbvexd.2  |-  ( ph  ->  F/ y ps )
cbvexd.3  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
Assertion
Ref Expression
cbvexd  |-  ( ph  ->  ( E. x ps  <->  E. y ch ) )
Distinct variable groups:    ph, x    ch, x
Allowed substitution hints:    ph( y)    ps( x, y)    ch( y)

Proof of Theorem cbvexd
StepHypRef Expression
1 cbvexd.1 . . 3  |-  F/ y
ph
21nfri 1519 . 2  |-  ( ph  ->  A. y ph )
3 cbvexd.2 . . 3  |-  ( ph  ->  F/ y ps )
43nfrd 1520 . 2  |-  ( ph  ->  ( ps  ->  A. y ps ) )
5 cbvexd.3 . 2  |-  ( ph  ->  ( x  =  y  ->  ( ps  <->  ch )
) )
62, 4, 5cbvexdh 1926 1  |-  ( ph  ->  ( E. x ps  <->  E. y ch ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105   F/wnf 1460   E.wex 1492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534
This theorem depends on definitions:  df-bi 117  df-nf 1461
This theorem is referenced by:  cbvexdva  1929  vtoclgft  2787  bdsepnft  14499  strcollnft  14596
  Copyright terms: Public domain W3C validator