ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfccdeq Unicode version

Theorem nfccdeq 2983
Description: Variation of nfcdeq 2982 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfccdeq.1  |-  F/_ x A
nfccdeq.2  |- CondEq ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
nfccdeq  |-  A  =  B
Distinct variable groups:    x, B    y, A
Allowed substitution hints:    A( x)    B( y)

Proof of Theorem nfccdeq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfccdeq.1 . . . 4  |-  F/_ x A
21nfcri 2330 . . 3  |-  F/ x  z  e.  A
3 equid 1712 . . . . 5  |-  z  =  z
43cdeqth 2972 . . . 4  |- CondEq ( x  =  y  ->  z  =  z )
5 nfccdeq.2 . . . 4  |- CondEq ( x  =  y  ->  A  =  B )
64, 5cdeqel 2981 . . 3  |- CondEq ( x  =  y  ->  (
z  e.  A  <->  z  e.  B ) )
72, 6nfcdeq 2982 . 2  |-  ( z  e.  A  <->  z  e.  B )
87eqriv 2190 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   F/_wnfc 2323  CondEqwcdeq 2968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-cleq 2186  df-clel 2189  df-nfc 2325  df-cdeq 2969
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator