ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfccdeq Unicode version

Theorem nfccdeq 2949
Description: Variation of nfcdeq 2948 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfccdeq.1  |-  F/_ x A
nfccdeq.2  |- CondEq ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
nfccdeq  |-  A  =  B
Distinct variable groups:    x, B    y, A
Allowed substitution hints:    A( x)    B( y)

Proof of Theorem nfccdeq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfccdeq.1 . . . 4  |-  F/_ x A
21nfcri 2302 . . 3  |-  F/ x  z  e.  A
3 equid 1689 . . . . 5  |-  z  =  z
43cdeqth 2938 . . . 4  |- CondEq ( x  =  y  ->  z  =  z )
5 nfccdeq.2 . . . 4  |- CondEq ( x  =  y  ->  A  =  B )
64, 5cdeqel 2947 . . 3  |- CondEq ( x  =  y  ->  (
z  e.  A  <->  z  e.  B ) )
72, 6nfcdeq 2948 . 2  |-  ( z  e.  A  <->  z  e.  B )
87eqriv 2162 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   F/_wnfc 2295  CondEqwcdeq 2934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-cdeq 2935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator