ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nfccdeq Unicode version

Theorem nfccdeq 2827
Description: Variation of nfcdeq 2826 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfccdeq.1  |-  F/_ x A
nfccdeq.2  |- CondEq ( x  =  y  ->  A  =  B )
Assertion
Ref Expression
nfccdeq  |-  A  =  B
Distinct variable groups:    x, B    y, A
Allowed substitution hints:    A( x)    B( y)

Proof of Theorem nfccdeq
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfccdeq.1 . . . 4  |-  F/_ x A
21nfcri 2219 . . 3  |-  F/ x  z  e.  A
3 equid 1632 . . . . 5  |-  z  =  z
43cdeqth 2816 . . . 4  |- CondEq ( x  =  y  ->  z  =  z )
5 nfccdeq.2 . . . 4  |- CondEq ( x  =  y  ->  A  =  B )
64, 5cdeqel 2825 . . 3  |- CondEq ( x  =  y  ->  (
z  e.  A  <->  z  e.  B ) )
72, 6nfcdeq 2826 . 2  |-  ( z  e.  A  <->  z  e.  B )
87eqriv 2082 1  |-  A  =  B
Colors of variables: wff set class
Syntax hints:    = wceq 1287    e. wcel 1436   F/_wnfc 2212  CondEqwcdeq 2812
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-nf 1393  df-sb 1690  df-cleq 2078  df-clel 2081  df-nfc 2214  df-cdeq 2813
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator