| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12d | Unicode version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1d.1 |
|
| eleq12d.2 |
|
| Ref | Expression |
|---|---|
| eleq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12d.2 |
. . 3
| |
| 2 | 1 | eleq2d 2266 |
. 2
|
| 3 | eleq1d.1 |
. . 3
| |
| 4 | 3 | eleq1d 2265 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: cbvraldva2 2736 cbvrexdva2 2737 cdeqel 2985 ru 2988 sbceqbid 2996 sbcel12g 3099 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 cbvrabcsf 3150 onintexmid 4610 elvvuni 4728 elrnmpt1 4918 canth 5878 smoeq 6357 smores 6359 smores2 6361 iordsmo 6364 nnaordi 6575 nnaordr 6577 fvixp 6771 cbvixp 6783 mptelixpg 6802 opabfi 7008 exmidaclem 7293 cc1 7350 cc2lem 7351 cc3 7353 ltapig 7424 ltmpig 7425 fzsubel 10154 elfzp1b 10191 ennnfonelemg 12647 ennnfonelemp1 12650 ennnfonelemnn0 12666 ctiunctlemu1st 12678 ctiunctlemu2nd 12679 ctiunctlemudc 12681 ctiunctlemfo 12683 prdsbasprj 12986 xpsfrnel 13048 ismgm 13061 mgm1 13074 issgrpd 13116 ismndd 13141 eqgfval 13430 ringcl 13647 unitinvcl 13757 aprval 13916 aprap 13920 islmodd 13927 rspcl 14125 rnglidlmmgm 14130 zndvds 14283 istps 14376 tpspropd 14380 eltpsg 14384 isms 14797 mspropd 14822 cnlimci 15017 |
| Copyright terms: Public domain | W3C validator |