| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12d | Unicode version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1d.1 |
|
| eleq12d.2 |
|
| Ref | Expression |
|---|---|
| eleq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12d.2 |
. . 3
| |
| 2 | 1 | eleq2d 2277 |
. 2
|
| 3 | eleq1d.1 |
. . 3
| |
| 4 | 3 | eleq1d 2276 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-17 1550 ax-ial 1558 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-cleq 2200 df-clel 2203 |
| This theorem is referenced by: cbvraldva2 2749 cbvrexdva2 2750 cdeqel 3001 ru 3004 sbceqbid 3012 sbcel12g 3116 cbvralcsf 3164 cbvrexcsf 3165 cbvreucsf 3166 cbvrabcsf 3167 onintexmid 4639 elvvuni 4757 elrnmpt1 4948 canth 5920 smoeq 6399 smores 6401 smores2 6403 iordsmo 6406 nnaordi 6617 nnaordr 6619 fvixp 6813 cbvixp 6825 mptelixpg 6844 opabfi 7061 exmidaclem 7351 cc1 7412 cc2lem 7413 cc3 7415 ltapig 7486 ltmpig 7487 fzsubel 10217 elfzp1b 10254 wrd2ind 11214 ennnfonelemg 12889 ennnfonelemp1 12892 ennnfonelemnn0 12908 ctiunctlemu1st 12920 ctiunctlemu2nd 12921 ctiunctlemudc 12923 ctiunctlemfo 12925 prdsbasprj 13229 xpsfrnel 13291 ismgm 13304 mgm1 13317 issgrpd 13359 ismndd 13384 eqgfval 13673 ringcl 13890 unitinvcl 14000 aprval 14159 aprap 14163 islmodd 14170 rspcl 14368 rnglidlmmgm 14373 zndvds 14526 istps 14619 tpspropd 14623 eltpsg 14627 isms 15040 mspropd 15065 cnlimci 15260 |
| Copyright terms: Public domain | W3C validator |