| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12d | Unicode version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1d.1 |
|
| eleq12d.2 |
|
| Ref | Expression |
|---|---|
| eleq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12d.2 |
. . 3
| |
| 2 | 1 | eleq2d 2275 |
. 2
|
| 3 | eleq1d.1 |
. . 3
| |
| 4 | 3 | eleq1d 2274 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-17 1549 ax-ial 1557 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-cleq 2198 df-clel 2201 |
| This theorem is referenced by: cbvraldva2 2745 cbvrexdva2 2746 cdeqel 2994 ru 2997 sbceqbid 3005 sbcel12g 3108 cbvralcsf 3156 cbvrexcsf 3157 cbvreucsf 3158 cbvrabcsf 3159 onintexmid 4621 elvvuni 4739 elrnmpt1 4929 canth 5897 smoeq 6376 smores 6378 smores2 6380 iordsmo 6383 nnaordi 6594 nnaordr 6596 fvixp 6790 cbvixp 6802 mptelixpg 6821 opabfi 7035 exmidaclem 7320 cc1 7377 cc2lem 7378 cc3 7380 ltapig 7451 ltmpig 7452 fzsubel 10182 elfzp1b 10219 ennnfonelemg 12774 ennnfonelemp1 12777 ennnfonelemnn0 12793 ctiunctlemu1st 12805 ctiunctlemu2nd 12806 ctiunctlemudc 12808 ctiunctlemfo 12810 prdsbasprj 13114 xpsfrnel 13176 ismgm 13189 mgm1 13202 issgrpd 13244 ismndd 13269 eqgfval 13558 ringcl 13775 unitinvcl 13885 aprval 14044 aprap 14048 islmodd 14055 rspcl 14253 rnglidlmmgm 14258 zndvds 14411 istps 14504 tpspropd 14508 eltpsg 14512 isms 14925 mspropd 14950 cnlimci 15145 |
| Copyright terms: Public domain | W3C validator |