![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq12d | Unicode version |
Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
eleq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eleq12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleq12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq2d 2263 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | eleq1d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | eleq1d 2262 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: cbvraldva2 2733 cbvrexdva2 2734 cdeqel 2982 ru 2985 sbceqbid 2993 sbcel12g 3096 cbvralcsf 3144 cbvrexcsf 3145 cbvreucsf 3146 cbvrabcsf 3147 onintexmid 4606 elvvuni 4724 elrnmpt1 4914 canth 5872 smoeq 6345 smores 6347 smores2 6349 iordsmo 6352 nnaordi 6563 nnaordr 6565 fvixp 6759 cbvixp 6771 mptelixpg 6790 opabfi 6994 exmidaclem 7270 cc1 7327 cc2lem 7328 cc3 7330 ltapig 7400 ltmpig 7401 fzsubel 10129 elfzp1b 10166 ennnfonelemg 12563 ennnfonelemp1 12566 ennnfonelemnn0 12582 ctiunctlemu1st 12594 ctiunctlemu2nd 12595 ctiunctlemudc 12597 ctiunctlemfo 12599 xpsfrnel 12930 ismgm 12943 mgm1 12956 issgrpd 12998 ismndd 13021 eqgfval 13295 ringcl 13512 unitinvcl 13622 aprval 13781 aprap 13785 islmodd 13792 rspcl 13990 rnglidlmmgm 13995 zndvds 14148 istps 14211 tpspropd 14215 eltpsg 14219 isms 14632 mspropd 14657 cnlimci 14852 |
Copyright terms: Public domain | W3C validator |