| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12d | Unicode version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1d.1 |
|
| eleq12d.2 |
|
| Ref | Expression |
|---|---|
| eleq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12d.2 |
. . 3
| |
| 2 | 1 | eleq2d 2299 |
. 2
|
| 3 | eleq1d.1 |
. . 3
| |
| 4 | 3 | eleq1d 2298 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-17 1572 ax-ial 1580 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-clel 2225 |
| This theorem is referenced by: cbvraldva2 2772 cbvrexdva2 2773 cdeqel 3024 ru 3027 sbceqbid 3035 sbcel12g 3139 cbvralcsf 3187 cbvrexcsf 3188 cbvreucsf 3189 cbvrabcsf 3190 onintexmid 4664 elvvuni 4782 elrnmpt1 4974 canth 5951 smoeq 6434 smores 6436 smores2 6438 iordsmo 6441 nnaordi 6652 nnaordr 6654 fvixp 6848 cbvixp 6860 mptelixpg 6879 opabfi 7096 exmidaclem 7386 cc1 7447 cc2lem 7448 cc3 7450 ltapig 7521 ltmpig 7522 fzsubel 10252 elfzp1b 10289 wrd2ind 11250 ennnfonelemg 12969 ennnfonelemp1 12972 ennnfonelemnn0 12988 ctiunctlemu1st 13000 ctiunctlemu2nd 13001 ctiunctlemudc 13003 ctiunctlemfo 13005 prdsbasprj 13310 xpsfrnel 13372 ismgm 13385 mgm1 13398 issgrpd 13440 ismndd 13465 eqgfval 13754 ringcl 13971 unitinvcl 14081 aprval 14240 aprap 14244 islmodd 14251 rspcl 14449 rnglidlmmgm 14454 zndvds 14607 istps 14700 tpspropd 14704 eltpsg 14708 isms 15121 mspropd 15146 cnlimci 15341 |
| Copyright terms: Public domain | W3C validator |