| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eleq12d | Unicode version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
| Ref | Expression |
|---|---|
| eleq1d.1 |
|
| eleq12d.2 |
|
| Ref | Expression |
|---|---|
| eleq12d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq12d.2 |
. . 3
| |
| 2 | 1 | eleq2d 2266 |
. 2
|
| 3 | eleq1d.1 |
. . 3
| |
| 4 | 3 | eleq1d 2265 |
. 2
|
| 5 | 2, 4 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 |
| This theorem is referenced by: cbvraldva2 2736 cbvrexdva2 2737 cdeqel 2985 ru 2988 sbceqbid 2996 sbcel12g 3099 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 cbvrabcsf 3150 onintexmid 4610 elvvuni 4728 elrnmpt1 4918 canth 5878 smoeq 6357 smores 6359 smores2 6361 iordsmo 6364 nnaordi 6575 nnaordr 6577 fvixp 6771 cbvixp 6783 mptelixpg 6802 opabfi 7008 exmidaclem 7291 cc1 7348 cc2lem 7349 cc3 7351 ltapig 7422 ltmpig 7423 fzsubel 10152 elfzp1b 10189 ennnfonelemg 12645 ennnfonelemp1 12648 ennnfonelemnn0 12664 ctiunctlemu1st 12676 ctiunctlemu2nd 12677 ctiunctlemudc 12679 ctiunctlemfo 12681 prdsbasprj 12984 xpsfrnel 13046 ismgm 13059 mgm1 13072 issgrpd 13114 ismndd 13139 eqgfval 13428 ringcl 13645 unitinvcl 13755 aprval 13914 aprap 13918 islmodd 13925 rspcl 14123 rnglidlmmgm 14128 zndvds 14281 istps 14352 tpspropd 14356 eltpsg 14360 isms 14773 mspropd 14798 cnlimci 14993 |
| Copyright terms: Public domain | W3C validator |