| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > eleq12d | Unicode version | ||
| Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) | 
| Ref | Expression | 
|---|---|
| eleq1d.1 | 
 | 
| eleq12d.2 | 
 | 
| Ref | Expression | 
|---|---|
| eleq12d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq12d.2 | 
. . 3
 | |
| 2 | 1 | eleq2d 2266 | 
. 2
 | 
| 3 | eleq1d.1 | 
. . 3
 | |
| 4 | 3 | eleq1d 2265 | 
. 2
 | 
| 5 | 2, 4 | bitrd 188 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-17 1540 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-clel 2192 | 
| This theorem is referenced by: cbvraldva2 2736 cbvrexdva2 2737 cdeqel 2985 ru 2988 sbceqbid 2996 sbcel12g 3099 cbvralcsf 3147 cbvrexcsf 3148 cbvreucsf 3149 cbvrabcsf 3150 onintexmid 4609 elvvuni 4727 elrnmpt1 4917 canth 5875 smoeq 6348 smores 6350 smores2 6352 iordsmo 6355 nnaordi 6566 nnaordr 6568 fvixp 6762 cbvixp 6774 mptelixpg 6793 opabfi 6999 exmidaclem 7275 cc1 7332 cc2lem 7333 cc3 7335 ltapig 7405 ltmpig 7406 fzsubel 10135 elfzp1b 10172 ennnfonelemg 12620 ennnfonelemp1 12623 ennnfonelemnn0 12639 ctiunctlemu1st 12651 ctiunctlemu2nd 12652 ctiunctlemudc 12654 ctiunctlemfo 12656 xpsfrnel 12987 ismgm 13000 mgm1 13013 issgrpd 13055 ismndd 13078 eqgfval 13352 ringcl 13569 unitinvcl 13679 aprval 13838 aprap 13842 islmodd 13849 rspcl 14047 rnglidlmmgm 14052 zndvds 14205 istps 14268 tpspropd 14272 eltpsg 14276 isms 14689 mspropd 14714 cnlimci 14909 | 
| Copyright terms: Public domain | W3C validator |