![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eleq12d | Unicode version |
Description: Deduction from equality to equivalence of membership. (Contributed by NM, 31-May-1994.) |
Ref | Expression |
---|---|
eleq1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eleq12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eleq12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq12d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq2d 2263 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | eleq1d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | eleq1d 2262 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: cbvraldva2 2733 cbvrexdva2 2734 cdeqel 2981 ru 2984 sbceqbid 2992 sbcel12g 3095 cbvralcsf 3143 cbvrexcsf 3144 cbvreucsf 3145 cbvrabcsf 3146 onintexmid 4605 elvvuni 4723 elrnmpt1 4913 canth 5871 smoeq 6343 smores 6345 smores2 6347 iordsmo 6350 nnaordi 6561 nnaordr 6563 fvixp 6757 cbvixp 6769 mptelixpg 6788 opabfi 6992 exmidaclem 7268 cc1 7325 cc2lem 7326 cc3 7328 ltapig 7398 ltmpig 7399 fzsubel 10126 elfzp1b 10163 ennnfonelemg 12560 ennnfonelemp1 12563 ennnfonelemnn0 12579 ctiunctlemu1st 12591 ctiunctlemu2nd 12592 ctiunctlemudc 12594 ctiunctlemfo 12596 xpsfrnel 12927 ismgm 12940 mgm1 12953 issgrpd 12995 ismndd 13018 eqgfval 13292 ringcl 13509 unitinvcl 13619 aprval 13778 aprap 13782 islmodd 13789 rspcl 13987 rnglidlmmgm 13992 zndvds 14137 istps 14200 tpspropd 14204 eltpsg 14208 isms 14621 mspropd 14646 cnlimci 14827 |
Copyright terms: Public domain | W3C validator |