| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrdi | Unicode version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbitrdi.1 |
|
| imbitrdi.2 |
|
| Ref | Expression |
|---|---|
| imbitrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrdi.1 |
. 2
| |
| 2 | imbitrdi.2 |
. . 3
| |
| 3 | 2 | biimpi 120 |
. 2
|
| 4 | 1, 3 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 885 nfalt 1624 alexim 1691 19.36-1 1719 ax11ev 1874 equs5or 1876 necon2bd 2458 necon2d 2459 necon1bbiddc 2463 necon2abiddc 2466 necon2bbiddc 2467 necon4idc 2469 necon4ddc 2472 necon1bddc 2477 spc2gv 2894 spc3gv 2896 mo2icl 2982 reupick 3488 prneimg 3851 invdisj 4075 trin 4191 exmidsssnc 4286 ordsucss 4595 eqbrrdva 4891 elreldm 4949 elres 5040 xp11m 5166 ssrnres 5170 opelf 5495 dffo4 5782 dftpos3 6406 tfr1onlemaccex 6492 tfrcllemaccex 6505 nnaordex 6672 swoer 6706 map0g 6833 mapsn 6835 nneneq 7014 fnfi 7099 prarloclemlo 7677 genprndl 7704 genprndu 7705 cauappcvgprlemladdrl 7840 caucvgprlemladdrl 7861 caucvgsrlemoffres 7983 caucvgsr 7985 nntopi 8077 letr 8225 reapcotr 8741 apcotr 8750 mulext1 8755 lt2msq 9029 nneoor 9545 xrletr 10000 icoshft 10182 swrdccatin2 11256 caucvgre 11487 absext 11569 rexico 11727 summodc 11889 gcdeq0 12493 intopsn 13395 znleval 14611 tgcn 14876 cnptoprest 14907 metequiv2 15164 bj-nnsn 16055 bj-inf2vnlem2 16292 |
| Copyright terms: Public domain | W3C validator |