![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > imbitrdi | Unicode version |
Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbitrdi.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
imbitrdi.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
imbitrdi |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbitrdi.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | imbitrdi.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | biimpi 120 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | syl6 33 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 880 nfalt 1578 alexim 1645 19.36-1 1673 ax11ev 1828 equs5or 1830 necon2bd 2405 necon2d 2406 necon1bbiddc 2410 necon2abiddc 2413 necon2bbiddc 2414 necon4idc 2416 necon4ddc 2419 necon1bddc 2424 spc2gv 2830 spc3gv 2832 mo2icl 2918 reupick 3421 prneimg 3776 invdisj 3999 trin 4113 exmidsssnc 4205 ordsucss 4505 eqbrrdva 4799 elreldm 4855 elres 4945 xp11m 5069 ssrnres 5073 opelf 5389 dffo4 5667 dftpos3 6266 tfr1onlemaccex 6352 tfrcllemaccex 6365 nnaordex 6532 swoer 6566 map0g 6691 mapsn 6693 nneneq 6860 fnfi 6939 prarloclemlo 7496 genprndl 7523 genprndu 7524 cauappcvgprlemladdrl 7659 caucvgprlemladdrl 7680 caucvgsrlemoffres 7802 caucvgsr 7804 nntopi 7896 letr 8043 reapcotr 8558 apcotr 8567 mulext1 8572 lt2msq 8846 nneoor 9358 xrletr 9811 icoshft 9993 caucvgre 10993 absext 11075 rexico 11233 summodc 11394 gcdeq0 11981 intopsn 12792 tgcn 13848 cnptoprest 13879 metequiv2 14136 bj-nnsn 14625 bj-inf2vnlem2 14863 |
Copyright terms: Public domain | W3C validator |