| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrdi | Unicode version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbitrdi.1 |
|
| imbitrdi.2 |
|
| Ref | Expression |
|---|---|
| imbitrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrdi.1 |
. 2
| |
| 2 | imbitrdi.2 |
. . 3
| |
| 3 | 2 | biimpi 120 |
. 2
|
| 4 | 1, 3 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 881 nfalt 1600 alexim 1667 19.36-1 1695 ax11ev 1850 equs5or 1852 necon2bd 2433 necon2d 2434 necon1bbiddc 2438 necon2abiddc 2441 necon2bbiddc 2442 necon4idc 2444 necon4ddc 2447 necon1bddc 2452 spc2gv 2863 spc3gv 2865 mo2icl 2951 reupick 3456 prneimg 3814 invdisj 4037 trin 4151 exmidsssnc 4246 ordsucss 4551 eqbrrdva 4847 elreldm 4903 elres 4994 xp11m 5120 ssrnres 5124 opelf 5446 dffo4 5727 dftpos3 6347 tfr1onlemaccex 6433 tfrcllemaccex 6446 nnaordex 6613 swoer 6647 map0g 6774 mapsn 6776 nneneq 6953 fnfi 7037 prarloclemlo 7606 genprndl 7633 genprndu 7634 cauappcvgprlemladdrl 7769 caucvgprlemladdrl 7790 caucvgsrlemoffres 7912 caucvgsr 7914 nntopi 8006 letr 8154 reapcotr 8670 apcotr 8679 mulext1 8684 lt2msq 8958 nneoor 9474 xrletr 9929 icoshft 10111 caucvgre 11234 absext 11316 rexico 11474 summodc 11636 gcdeq0 12240 intopsn 13141 znleval 14357 tgcn 14622 cnptoprest 14653 metequiv2 14910 bj-nnsn 15602 bj-inf2vnlem2 15840 |
| Copyright terms: Public domain | W3C validator |