| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > imbitrdi | Unicode version | ||
| Description: A mixed syllogism inference from a nested implication and a biconditional. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| imbitrdi.1 |
|
| imbitrdi.2 |
|
| Ref | Expression |
|---|---|
| imbitrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imbitrdi.1 |
. 2
| |
| 2 | imbitrdi.2 |
. . 3
| |
| 3 | 2 | biimpi 120 |
. 2
|
| 4 | 1, 3 | syl6 33 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 3imtr3g 204 exp4a 366 con2biddc 882 nfalt 1602 alexim 1669 19.36-1 1697 ax11ev 1852 equs5or 1854 necon2bd 2435 necon2d 2436 necon1bbiddc 2440 necon2abiddc 2443 necon2bbiddc 2444 necon4idc 2446 necon4ddc 2449 necon1bddc 2454 spc2gv 2868 spc3gv 2870 mo2icl 2956 reupick 3461 prneimg 3821 invdisj 4044 trin 4160 exmidsssnc 4255 ordsucss 4560 eqbrrdva 4856 elreldm 4913 elres 5004 xp11m 5130 ssrnres 5134 opelf 5458 dffo4 5741 dftpos3 6361 tfr1onlemaccex 6447 tfrcllemaccex 6460 nnaordex 6627 swoer 6661 map0g 6788 mapsn 6790 nneneq 6969 fnfi 7053 prarloclemlo 7627 genprndl 7654 genprndu 7655 cauappcvgprlemladdrl 7790 caucvgprlemladdrl 7811 caucvgsrlemoffres 7933 caucvgsr 7935 nntopi 8027 letr 8175 reapcotr 8691 apcotr 8700 mulext1 8705 lt2msq 8979 nneoor 9495 xrletr 9950 icoshft 10132 caucvgre 11367 absext 11449 rexico 11607 summodc 11769 gcdeq0 12373 intopsn 13274 znleval 14490 tgcn 14755 cnptoprest 14786 metequiv2 15043 bj-nnsn 15808 bj-inf2vnlem2 16045 |
| Copyright terms: Public domain | W3C validator |