ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bicom Unicode version

Theorem bicom 140
Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.)
Assertion
Ref Expression
bicom  |-  ( (
ph 
<->  ps )  <->  ( ps  <->  ph ) )

Proof of Theorem bicom
StepHypRef Expression
1 bicom1 131 . 2  |-  ( (
ph 
<->  ps )  ->  ( ps 
<-> 
ph ) )
2 bicom1 131 . 2  |-  ( ( ps  <->  ph )  ->  ( ph 
<->  ps ) )
31, 2impbii 126 1  |-  ( (
ph 
<->  ps )  <->  ( ps  <->  ph ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  bicomd  141  bibi1i  228  bibi1d  233  ibibr  246  bibif  699  con2bidc  876  con2biddc  881  pm5.17dc  905  bigolden  957  nbbndc  1405  bilukdc  1407  falbitru  1428  3impexpbicom  1449  exists1  2138  eqcom  2195  abeq1  2303  necon2abiddc  2430  necon2bbiddc  2431  necon4bbiddc  2438  ssequn1  3329  axpow3  4206  isocnv  5854  suplocsrlem  7868  uzennn  10507  bezoutlemle  12145
  Copyright terms: Public domain W3C validator