| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > bicom | Unicode version | ||
| Description: Commutative law for equivalence. Theorem *4.21 of [WhiteheadRussell] p. 117. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 11-Nov-2012.) |
| Ref | Expression |
|---|---|
| bicom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bicom1 131 |
. 2
| |
| 2 | bicom1 131 |
. 2
| |
| 3 | 1, 2 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: bicomd 141 bibi1i 228 bibi1d 233 ibibr 246 bibif 703 con2bidc 880 con2biddc 885 pm5.17dc 909 bigolden 961 nbbndc 1436 bilukdc 1438 falbitru 1459 3impexpbicom 1481 exists1 2174 eqcom 2231 abeq1 2339 necon2abiddc 2466 necon2bbiddc 2467 necon4bbiddc 2474 ssequn1 3374 axpow3 4261 isocnv 5935 suplocsrlem 7995 uzennn 10658 bezoutlemle 12529 |
| Copyright terms: Public domain | W3C validator |