ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfrompeirce Unicode version

Theorem dcfrompeirce 1460
Description: The decidability of a proposition  ch follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 915), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
Hypotheses
Ref Expression
dcfrompeirce.1  |-  ( ph  <->  ( ch  \/  -.  ch ) )
dcfrompeirce.2  |-  ( ps  <-> F.  )
dcfrompeirce.3  |-  ( ( ( ph  ->  ps )  ->  ph )  ->  ph )
Assertion
Ref Expression
dcfrompeirce  |- DECID  ch

Proof of Theorem dcfrompeirce
StepHypRef Expression
1 pm2.67-2 714 . . . . 5  |-  ( ( ( ch  \/  -.  ch )  -> F.  )  ->  ( ch  -> F.  ) )
2 dfnot 1382 . . . . 5  |-  ( -. 
ch 
<->  ( ch  -> F.  ) )
31, 2sylibr 134 . . . 4  |-  ( ( ( ch  \/  -.  ch )  -> F.  )  ->  -.  ch )
43olcd 735 . . 3  |-  ( ( ( ch  \/  -.  ch )  -> F.  )  ->  ( ch  \/  -.  ch ) )
5 dcfrompeirce.3 . . . 4  |-  ( ( ( ph  ->  ps )  ->  ph )  ->  ph )
6 dcfrompeirce.1 . . . . . 6  |-  ( ph  <->  ( ch  \/  -.  ch ) )
7 dcfrompeirce.2 . . . . . 6  |-  ( ps  <-> F.  )
86, 7imbi12i 239 . . . . 5  |-  ( (
ph  ->  ps )  <->  ( ( ch  \/  -.  ch )  -> F.  ) )
98, 6imbi12i 239 . . . 4  |-  ( ( ( ph  ->  ps )  ->  ph )  <->  ( (
( ch  \/  -.  ch )  -> F.  )  ->  ( ch  \/  -.  ch ) ) )
105, 9, 63imtr3i 200 . . 3  |-  ( ( ( ( ch  \/  -.  ch )  -> F.  )  ->  ( ch  \/  -.  ch ) )  -> 
( ch  \/  -.  ch ) )
114, 10ax-mp 5 . 2  |-  ( ch  \/  -.  ch )
12 df-dc 836 . 2  |-  (DECID  ch  <->  ( ch  \/  -.  ch ) )
1311, 12mpbir 146 1  |- DECID  ch
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 709  DECID wdc 835   F. wfal 1369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367  df-fal 1370
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator