ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfrompeirce Unicode version

Theorem dcfrompeirce 1492
Description: The decidability of a proposition  ch follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 919), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
Hypotheses
Ref Expression
dcfrompeirce.1  |-  ( ph  <->  ( ch  \/  -.  ch ) )
dcfrompeirce.2  |-  ( ps  <-> F.  )
dcfrompeirce.3  |-  ( ( ( ph  ->  ps )  ->  ph )  ->  ph )
Assertion
Ref Expression
dcfrompeirce  |- DECID  ch

Proof of Theorem dcfrompeirce
StepHypRef Expression
1 pm2.67-2 718 . . . . 5  |-  ( ( ( ch  \/  -.  ch )  -> F.  )  ->  ( ch  -> F.  ) )
2 dfnot 1413 . . . . 5  |-  ( -. 
ch 
<->  ( ch  -> F.  ) )
31, 2sylibr 134 . . . 4  |-  ( ( ( ch  \/  -.  ch )  -> F.  )  ->  -.  ch )
43olcd 739 . . 3  |-  ( ( ( ch  \/  -.  ch )  -> F.  )  ->  ( ch  \/  -.  ch ) )
5 dcfrompeirce.3 . . . 4  |-  ( ( ( ph  ->  ps )  ->  ph )  ->  ph )
6 dcfrompeirce.1 . . . . . 6  |-  ( ph  <->  ( ch  \/  -.  ch ) )
7 dcfrompeirce.2 . . . . . 6  |-  ( ps  <-> F.  )
86, 7imbi12i 239 . . . . 5  |-  ( (
ph  ->  ps )  <->  ( ( ch  \/  -.  ch )  -> F.  ) )
98, 6imbi12i 239 . . . 4  |-  ( ( ( ph  ->  ps )  ->  ph )  <->  ( (
( ch  \/  -.  ch )  -> F.  )  ->  ( ch  \/  -.  ch ) ) )
105, 9, 63imtr3i 200 . . 3  |-  ( ( ( ( ch  \/  -.  ch )  -> F.  )  ->  ( ch  \/  -.  ch ) )  -> 
( ch  \/  -.  ch ) )
114, 10ax-mp 5 . 2  |-  ( ch  \/  -.  ch )
12 df-dc 840 . 2  |-  (DECID  ch  <->  ( ch  \/  -.  ch ) )
1311, 12mpbir 146 1  |- DECID  ch
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 713  DECID wdc 839   F. wfal 1400
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714
This theorem depends on definitions:  df-bi 117  df-dc 840  df-tru 1398  df-fal 1401
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator