ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnot Unicode version

Theorem dfnot 1366
Description: Given falsum, we can define the negation of a wff 
ph as the statement that a contradiction follows from assuming  ph. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 21-Jul-2019.)
Assertion
Ref Expression
dfnot  |-  ( -. 
ph 
<->  ( ph  -> F.  ) )

Proof of Theorem dfnot
StepHypRef Expression
1 fal 1355 . 2  |-  -. F.
2 mtt 680 . 2  |-  ( -. F.  ->  ( -.  ph  <->  (
ph  -> F.  ) ) )
31, 2ax-mp 5 1  |-  ( -. 
ph 
<->  ( ph  -> F.  ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 104   F. wfal 1353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354
This theorem is referenced by:  inegd  1367  pclem6  1369  alnex  1492  alexim  1638  difin  3364  indifdir  3383  recvguniq  10959  logbgcd1irr  13679  bj-axempty2  13929
  Copyright terms: Public domain W3C validator