| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfnot | Unicode version | ||
| Description: Given falsum, we can
define the negation of a wff  | 
| Ref | Expression | 
|---|---|
| dfnot | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | fal 1371 | 
. 2
 | |
| 2 | mtt 686 | 
. 2
 | |
| 3 | 1, 2 | ax-mp 5 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 | 
| This theorem is referenced by: inegd 1383 pclem6 1385 dcfrompeirce 1460 alnex 1513 alexim 1659 difin 3400 indifdir 3419 recvguniq 11160 logbgcd1irr 15203 bj-axempty2 15540 | 
| Copyright terms: Public domain | W3C validator |