| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfnot | Unicode version | ||
| Description: Given falsum, we can
define the negation of a wff |
| Ref | Expression |
|---|---|
| dfnot |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fal 1402 |
. 2
| |
| 2 | mtt 689 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 |
| This theorem is referenced by: inegd 1414 pclem6 1416 dcfrompeirce 1492 alnex 1545 alexim 1691 difin 3441 indifdir 3460 recvguniq 11501 logbgcd1irr 15635 bj-axempty2 16215 |
| Copyright terms: Public domain | W3C validator |