ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfromcon Unicode version

Theorem dcfromcon 1459
Description: The decidability of a proposition  ch follows from a suitable instance of the principle of contraposition. Therefore, if we were to introduce contraposition as a general principle (without the decidability condition in condc 854), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since the principle of contraposition is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
Hypotheses
Ref Expression
dcfromcon.1  |-  ( ph  <->  ( ch  \/  -.  ch ) )
dcfromcon.2  |-  ( ps  <-> T.  )
dcfromcon.3  |-  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph ) )
Assertion
Ref Expression
dcfromcon  |- DECID  ch

Proof of Theorem dcfromcon
StepHypRef Expression
1 nnexmid 851 . . . . 5  |-  -.  -.  ( ch  \/  -.  ch )
21pm2.21i 647 . . . 4  |-  ( -.  ( ch  \/  -.  ch )  ->  -. T.  )
3 dcfromcon.3 . . . . 5  |-  ( ( -.  ph  ->  -.  ps )  ->  ( ps  ->  ph ) )
4 dcfromcon.1 . . . . . . 7  |-  ( ph  <->  ( ch  \/  -.  ch ) )
54notbii 669 . . . . . 6  |-  ( -. 
ph 
<->  -.  ( ch  \/  -.  ch ) )
6 dcfromcon.2 . . . . . . 7  |-  ( ps  <-> T.  )
76notbii 669 . . . . . 6  |-  ( -. 
ps 
<->  -. T.  )
85, 7imbi12i 239 . . . . 5  |-  ( ( -.  ph  ->  -.  ps ) 
<->  ( -.  ( ch  \/  -.  ch )  ->  -. T.  ) )
96, 4imbi12i 239 . . . . 5  |-  ( ( ps  ->  ph )  <->  ( T.  ->  ( ch  \/  -.  ch ) ) )
103, 8, 93imtr3i 200 . . . 4  |-  ( ( -.  ( ch  \/  -.  ch )  ->  -. T.  )  ->  ( T. 
->  ( ch  \/  -.  ch ) ) )
112, 10ax-mp 5 . . 3  |-  ( T. 
->  ( ch  \/  -.  ch ) )
1211mptru 1373 . 2  |-  ( ch  \/  -.  ch )
13 df-dc 836 . 2  |-  (DECID  ch  <->  ( ch  \/  -.  ch ) )
1412, 13mpbir 146 1  |- DECID  ch
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 105    \/ wo 709  DECID wdc 835   T. wtru 1365
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator