| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcfrompeirce | GIF version | ||
| Description: The decidability of a proposition 𝜒 follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 916), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dcfrompeirce.1 | ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) |
| dcfrompeirce.2 | ⊢ (𝜓 ↔ ⊥) |
| dcfrompeirce.3 | ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) |
| Ref | Expression |
|---|---|
| dcfrompeirce | ⊢ DECID 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.67-2 715 | . . . . 5 ⊢ (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 → ⊥)) | |
| 2 | dfnot 1391 | . . . . 5 ⊢ (¬ 𝜒 ↔ (𝜒 → ⊥)) | |
| 3 | 1, 2 | sylibr 134 | . . . 4 ⊢ (((𝜒 ∨ ¬ 𝜒) → ⊥) → ¬ 𝜒) |
| 4 | 3 | olcd 736 | . . 3 ⊢ (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒)) |
| 5 | dcfrompeirce.3 | . . . 4 ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) | |
| 6 | dcfrompeirce.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 7 | dcfrompeirce.2 | . . . . . 6 ⊢ (𝜓 ↔ ⊥) | |
| 8 | 6, 7 | imbi12i 239 | . . . . 5 ⊢ ((𝜑 → 𝜓) ↔ ((𝜒 ∨ ¬ 𝜒) → ⊥)) |
| 9 | 8, 6 | imbi12i 239 | . . . 4 ⊢ (((𝜑 → 𝜓) → 𝜑) ↔ (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒))) |
| 10 | 5, 9, 6 | 3imtr3i 200 | . . 3 ⊢ ((((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒)) → (𝜒 ∨ ¬ 𝜒)) |
| 11 | 4, 10 | ax-mp 5 | . 2 ⊢ (𝜒 ∨ ¬ 𝜒) |
| 12 | df-dc 837 | . 2 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 13 | 11, 12 | mpbir 146 | 1 ⊢ DECID 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 710 DECID wdc 836 ⊥wfal 1378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-tru 1376 df-fal 1379 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |