| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dcfrompeirce | GIF version | ||
| Description: The decidability of a proposition 𝜒 follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 918), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dcfrompeirce.1 | ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) |
| dcfrompeirce.2 | ⊢ (𝜓 ↔ ⊥) |
| dcfrompeirce.3 | ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) |
| Ref | Expression |
|---|---|
| dcfrompeirce | ⊢ DECID 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.67-2 717 | . . . . 5 ⊢ (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 → ⊥)) | |
| 2 | dfnot 1393 | . . . . 5 ⊢ (¬ 𝜒 ↔ (𝜒 → ⊥)) | |
| 3 | 1, 2 | sylibr 134 | . . . 4 ⊢ (((𝜒 ∨ ¬ 𝜒) → ⊥) → ¬ 𝜒) |
| 4 | 3 | olcd 738 | . . 3 ⊢ (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒)) |
| 5 | dcfrompeirce.3 | . . . 4 ⊢ (((𝜑 → 𝜓) → 𝜑) → 𝜑) | |
| 6 | dcfrompeirce.1 | . . . . . 6 ⊢ (𝜑 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 7 | dcfrompeirce.2 | . . . . . 6 ⊢ (𝜓 ↔ ⊥) | |
| 8 | 6, 7 | imbi12i 239 | . . . . 5 ⊢ ((𝜑 → 𝜓) ↔ ((𝜒 ∨ ¬ 𝜒) → ⊥)) |
| 9 | 8, 6 | imbi12i 239 | . . . 4 ⊢ (((𝜑 → 𝜓) → 𝜑) ↔ (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒))) |
| 10 | 5, 9, 6 | 3imtr3i 200 | . . 3 ⊢ ((((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒)) → (𝜒 ∨ ¬ 𝜒)) |
| 11 | 4, 10 | ax-mp 5 | . 2 ⊢ (𝜒 ∨ ¬ 𝜒) |
| 12 | df-dc 839 | . 2 ⊢ (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒)) | |
| 13 | 11, 12 | mpbir 146 | 1 ⊢ DECID 𝜒 |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 105 ∨ wo 712 DECID wdc 838 ⊥wfal 1380 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-tru 1378 df-fal 1381 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |