ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfrompeirce GIF version

Theorem dcfrompeirce 1472
Description: The decidability of a proposition 𝜒 follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 918), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
Hypotheses
Ref Expression
dcfrompeirce.1 (𝜑 ↔ (𝜒 ∨ ¬ 𝜒))
dcfrompeirce.2 (𝜓 ↔ ⊥)
dcfrompeirce.3 (((𝜑𝜓) → 𝜑) → 𝜑)
Assertion
Ref Expression
dcfrompeirce DECID 𝜒

Proof of Theorem dcfrompeirce
StepHypRef Expression
1 pm2.67-2 717 . . . . 5 (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 → ⊥))
2 dfnot 1393 . . . . 5 𝜒 ↔ (𝜒 → ⊥))
31, 2sylibr 134 . . . 4 (((𝜒 ∨ ¬ 𝜒) → ⊥) → ¬ 𝜒)
43olcd 738 . . 3 (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒))
5 dcfrompeirce.3 . . . 4 (((𝜑𝜓) → 𝜑) → 𝜑)
6 dcfrompeirce.1 . . . . . 6 (𝜑 ↔ (𝜒 ∨ ¬ 𝜒))
7 dcfrompeirce.2 . . . . . 6 (𝜓 ↔ ⊥)
86, 7imbi12i 239 . . . . 5 ((𝜑𝜓) ↔ ((𝜒 ∨ ¬ 𝜒) → ⊥))
98, 6imbi12i 239 . . . 4 (((𝜑𝜓) → 𝜑) ↔ (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒)))
105, 9, 63imtr3i 200 . . 3 ((((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒)) → (𝜒 ∨ ¬ 𝜒))
114, 10ax-mp 5 . 2 (𝜒 ∨ ¬ 𝜒)
12 df-dc 839 . 2 (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒))
1311, 12mpbir 146 1 DECID 𝜒
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 712  DECID wdc 838  wfal 1380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713
This theorem depends on definitions:  df-bi 117  df-dc 839  df-tru 1378  df-fal 1381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator