ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcfrompeirce GIF version

Theorem dcfrompeirce 1470
Description: The decidability of a proposition 𝜒 follows from a suitable instance of Peirce's law. Therefore, if we were to introduce Peirce's law as a general principle (without the decidability condition in peircedc 916), then we could prove that every proposition is decidable, giving us the classical system of propositional calculus (since Perice's law is itself classically valid). (Contributed by Adrian Ducourtial, 6-Oct-2025.)
Hypotheses
Ref Expression
dcfrompeirce.1 (𝜑 ↔ (𝜒 ∨ ¬ 𝜒))
dcfrompeirce.2 (𝜓 ↔ ⊥)
dcfrompeirce.3 (((𝜑𝜓) → 𝜑) → 𝜑)
Assertion
Ref Expression
dcfrompeirce DECID 𝜒

Proof of Theorem dcfrompeirce
StepHypRef Expression
1 pm2.67-2 715 . . . . 5 (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 → ⊥))
2 dfnot 1391 . . . . 5 𝜒 ↔ (𝜒 → ⊥))
31, 2sylibr 134 . . . 4 (((𝜒 ∨ ¬ 𝜒) → ⊥) → ¬ 𝜒)
43olcd 736 . . 3 (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒))
5 dcfrompeirce.3 . . . 4 (((𝜑𝜓) → 𝜑) → 𝜑)
6 dcfrompeirce.1 . . . . . 6 (𝜑 ↔ (𝜒 ∨ ¬ 𝜒))
7 dcfrompeirce.2 . . . . . 6 (𝜓 ↔ ⊥)
86, 7imbi12i 239 . . . . 5 ((𝜑𝜓) ↔ ((𝜒 ∨ ¬ 𝜒) → ⊥))
98, 6imbi12i 239 . . . 4 (((𝜑𝜓) → 𝜑) ↔ (((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒)))
105, 9, 63imtr3i 200 . . 3 ((((𝜒 ∨ ¬ 𝜒) → ⊥) → (𝜒 ∨ ¬ 𝜒)) → (𝜒 ∨ ¬ 𝜒))
114, 10ax-mp 5 . 2 (𝜒 ∨ ¬ 𝜒)
12 df-dc 837 . 2 (DECID 𝜒 ↔ (𝜒 ∨ ¬ 𝜒))
1311, 12mpbir 146 1 DECID 𝜒
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wb 105  wo 710  DECID wdc 836  wfal 1378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-fal 1379
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator