ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3i Unicode version

Theorem 3imtr3i 200
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.)
Hypotheses
Ref Expression
3imtr3.1  |-  ( ph  ->  ps )
3imtr3.2  |-  ( ph  <->  ch )
3imtr3.3  |-  ( ps  <->  th )
Assertion
Ref Expression
3imtr3i  |-  ( ch 
->  th )

Proof of Theorem 3imtr3i
StepHypRef Expression
1 3imtr3.2 . . 3  |-  ( ph  <->  ch )
2 3imtr3.1 . . 3  |-  ( ph  ->  ps )
31, 2sylbir 135 . 2  |-  ( ch 
->  ps )
4 3imtr3.3 . 2  |-  ( ps  <->  th )
53, 4sylib 122 1  |-  ( ch 
->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  dcfromnotnotr  1468  dcfromcon  1469  dcfrompeirce  1470  cbv1  1769  cbv1v  1771  moimv  2122  hblem  2315  tfi  4648  smores  6401  idssen  6891  suplocsrlem  7956  bezoutlemle  12444  limcmpted  15250  sincosq3sgn  15415  fsumdvdsmul  15578  subctctexmid  16139  dcapnconstALT  16203
  Copyright terms: Public domain W3C validator