ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imtr3i Unicode version

Theorem 3imtr3i 200
Description: A mixed syllogism inference, useful for removing a definition from both sides of an implication. (Contributed by NM, 10-Aug-1994.)
Hypotheses
Ref Expression
3imtr3.1  |-  ( ph  ->  ps )
3imtr3.2  |-  ( ph  <->  ch )
3imtr3.3  |-  ( ps  <->  th )
Assertion
Ref Expression
3imtr3i  |-  ( ch 
->  th )

Proof of Theorem 3imtr3i
StepHypRef Expression
1 3imtr3.2 . . 3  |-  ( ph  <->  ch )
2 3imtr3.1 . . 3  |-  ( ph  ->  ps )
31, 2sylbir 135 . 2  |-  ( ch 
->  ps )
4 3imtr3.3 . 2  |-  ( ps  <->  th )
53, 4sylib 122 1  |-  ( ch 
->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  dcfromnotnotr  1458  dcfromcon  1459  dcfrompeirce  1460  cbv1  1759  cbv1v  1761  moimv  2111  hblem  2304  tfi  4619  smores  6359  idssen  6845  suplocsrlem  7892  bezoutlemle  12200  limcmpted  14983  sincosq3sgn  15148  fsumdvdsmul  15311  subctctexmid  15731  dcapnconstALT  15793
  Copyright terms: Public domain W3C validator