ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dcned Unicode version

Theorem dcned 2346
Description: Decidable equality implies decidable negated equality. (Contributed by Jim Kingdon, 3-May-2020.)
Hypothesis
Ref Expression
dcned.eq  |-  ( ph  -> DECID  A  =  B )
Assertion
Ref Expression
dcned  |-  ( ph  -> DECID  A  =/=  B )

Proof of Theorem dcned
StepHypRef Expression
1 dcned.eq . . 3  |-  ( ph  -> DECID  A  =  B )
2 dcn 837 . . 3  |-  (DECID  A  =  B  -> DECID  -.  A  =  B )
31, 2syl 14 . 2  |-  ( ph  -> DECID  -.  A  =  B )
4 df-ne 2341 . . 3  |-  ( A  =/=  B  <->  -.  A  =  B )
54dcbii 835 . 2  |-  (DECID  A  =/= 
B  <-> DECID  -.  A  =  B
)
63, 5sylibr 133 1  |-  ( ph  -> DECID  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4  DECID wdc 829    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704
This theorem depends on definitions:  df-bi 116  df-dc 830  df-ne 2341
This theorem is referenced by:  nn0n0n1ge2b  9291  algcvgblem  12003
  Copyright terms: Public domain W3C validator