Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dcned | GIF version |
Description: Decidable equality implies decidable negated equality. (Contributed by Jim Kingdon, 3-May-2020.) |
Ref | Expression |
---|---|
dcned.eq | ⊢ (𝜑 → DECID 𝐴 = 𝐵) |
Ref | Expression |
---|---|
dcned | ⊢ (𝜑 → DECID 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dcned.eq | . . 3 ⊢ (𝜑 → DECID 𝐴 = 𝐵) | |
2 | dcn 832 | . . 3 ⊢ (DECID 𝐴 = 𝐵 → DECID ¬ 𝐴 = 𝐵) | |
3 | 1, 2 | syl 14 | . 2 ⊢ (𝜑 → DECID ¬ 𝐴 = 𝐵) |
4 | df-ne 2337 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
5 | 4 | dcbii 830 | . 2 ⊢ (DECID 𝐴 ≠ 𝐵 ↔ DECID ¬ 𝐴 = 𝐵) |
6 | 3, 5 | sylibr 133 | 1 ⊢ (𝜑 → DECID 𝐴 ≠ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 DECID wdc 824 = wceq 1343 ≠ wne 2336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-ne 2337 |
This theorem is referenced by: nn0n0n1ge2b 9270 algcvgblem 11981 |
Copyright terms: Public domain | W3C validator |