ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neqned Unicode version

Theorem neqned 2374
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2388. One-way deduction form of df-ne 2368. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2417. (Revised by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
neqned.1  |-  ( ph  ->  -.  A  =  B )
Assertion
Ref Expression
neqned  |-  ( ph  ->  A  =/=  B )

Proof of Theorem neqned
StepHypRef Expression
1 neqned.1 . 2  |-  ( ph  ->  -.  A  =  B )
2 df-ne 2368 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
31, 2sylibr 134 1  |-  ( ph  ->  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1364    =/= wne 2367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108
This theorem depends on definitions:  df-bi 117  df-ne 2368
This theorem is referenced by:  neqne  2375  tfr1onlemsucaccv  6408  tfrcllemsucaccv  6421  enpr2d  6885  djune  7153  omp1eomlem  7169  difinfsn  7175  nnnninfeq2  7204  nninfisol  7208  netap  7337  2omotaplemap  7340  exmidapne  7343  xaddf  9936  xaddval  9937  xleaddadd  9979  flqltnz  10394  zfz1iso  10950  bezoutlemle  12200  eucalgval2  12246  eucalglt  12250  isprm2  12310  sqne2sq  12370  nnoddn2prmb  12456  ennnfonelemim  12666  ctinfomlemom  12669  hashfinmndnn  13134  logbgcd1irraplemexp  15288  lgsfcl2  15331  lgscllem  15332  lgsval2lem  15335  bj-charfunbi  15541  nnsf  15736  peano3nninf  15738  neapmkvlem  15798
  Copyright terms: Public domain W3C validator