![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neqned | Unicode version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2368. One-way deduction form of df-ne 2348. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2397. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
neqned |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-ne 2348 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-ne 2348 |
This theorem is referenced by: neqne 2355 tfr1onlemsucaccv 6344 tfrcllemsucaccv 6357 enpr2d 6819 djune 7079 omp1eomlem 7095 difinfsn 7101 nnnninfeq2 7129 nninfisol 7133 netap 7255 2omotaplemap 7258 exmidapne 7261 xaddf 9846 xaddval 9847 xleaddadd 9889 flqltnz 10289 zfz1iso 10823 bezoutlemle 12011 eucalgval2 12055 eucalglt 12059 lcmval 12065 lcmcllem 12069 isprm2 12119 sqne2sq 12179 nnoddn2prmb 12264 ennnfonelemim 12427 ctinfomlemom 12430 hashfinmndnn 12838 logbgcd1irraplemexp 14471 lgsfcl2 14492 lgscllem 14493 lgsval2lem 14496 bj-charfunbi 14648 nnsf 14839 peano3nninf 14841 neapmkvlem 14900 |
Copyright terms: Public domain | W3C validator |