| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neqned | Unicode version | ||
| Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2421. One-way deduction form of df-ne 2401. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2450. (Revised by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| neqned.1 |
|
| Ref | Expression |
|---|---|
| neqned |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqned.1 |
. 2
| |
| 2 | df-ne 2401 |
. 2
| |
| 3 | 1, 2 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-ne 2401 |
| This theorem is referenced by: neqne 2408 tfr1onlemsucaccv 6485 tfrcllemsucaccv 6498 enpr2d 6970 djune 7241 omp1eomlem 7257 difinfsn 7263 nnnninfeq2 7292 nninfisol 7296 netap 7436 2omotaplemap 7439 exmidapne 7442 xaddf 10036 xaddval 10037 xleaddadd 10079 flqltnz 10502 zfz1iso 11058 bezoutlemle 12524 eucalgval2 12570 eucalglt 12574 isprm2 12634 sqne2sq 12694 nnoddn2prmb 12780 ennnfonelemim 12990 ctinfomlemom 12993 hashfinmndnn 13460 logbgcd1irraplemexp 15636 lgsfcl2 15679 lgscllem 15680 lgsval2lem 15683 uhgr2edg 15998 bj-charfunbi 16132 nnsf 16330 peano3nninf 16332 neapmkvlem 16394 |
| Copyright terms: Public domain | W3C validator |