![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neqned | Unicode version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2378. One-way deduction form of df-ne 2358. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2407. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
neqned |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-ne 2358 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-ne 2358 |
This theorem is referenced by: neqne 2365 tfr1onlemsucaccv 6356 tfrcllemsucaccv 6369 enpr2d 6831 djune 7091 omp1eomlem 7107 difinfsn 7113 nnnninfeq2 7141 nninfisol 7145 netap 7267 2omotaplemap 7270 exmidapne 7273 xaddf 9858 xaddval 9859 xleaddadd 9901 flqltnz 10301 zfz1iso 10835 bezoutlemle 12023 eucalgval2 12067 eucalglt 12071 lcmval 12077 lcmcllem 12081 isprm2 12131 sqne2sq 12191 nnoddn2prmb 12276 ennnfonelemim 12439 ctinfomlemom 12442 hashfinmndnn 12855 logbgcd1irraplemexp 14682 lgsfcl2 14703 lgscllem 14704 lgsval2lem 14707 bj-charfunbi 14859 nnsf 15051 peano3nninf 15053 neapmkvlem 15112 |
Copyright terms: Public domain | W3C validator |