| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > neqned | Unicode version | ||
| Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2388. One-way deduction form of df-ne 2368. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2417. (Revised by Wolf Lammen, 22-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| neqned.1 | 
 | 
| Ref | Expression | 
|---|---|
| neqned | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neqned.1 | 
. 2
 | |
| 2 | df-ne 2368 | 
. 2
 | |
| 3 | 1, 2 | sylibr 134 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-ne 2368 | 
| This theorem is referenced by: neqne 2375 tfr1onlemsucaccv 6399 tfrcllemsucaccv 6412 enpr2d 6876 djune 7144 omp1eomlem 7160 difinfsn 7166 nnnninfeq2 7195 nninfisol 7199 netap 7321 2omotaplemap 7324 exmidapne 7327 xaddf 9919 xaddval 9920 xleaddadd 9962 flqltnz 10377 zfz1iso 10933 bezoutlemle 12175 eucalgval2 12221 eucalglt 12225 isprm2 12285 sqne2sq 12345 nnoddn2prmb 12431 ennnfonelemim 12641 ctinfomlemom 12644 hashfinmndnn 13073 logbgcd1irraplemexp 15204 lgsfcl2 15247 lgscllem 15248 lgsval2lem 15251 bj-charfunbi 15457 nnsf 15649 peano3nninf 15651 neapmkvlem 15711 | 
| Copyright terms: Public domain | W3C validator |