| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neqned | Unicode version | ||
| Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2388. One-way deduction form of df-ne 2368. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2417. (Revised by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| neqned.1 |
|
| Ref | Expression |
|---|---|
| neqned |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqned.1 |
. 2
| |
| 2 | df-ne 2368 |
. 2
| |
| 3 | 1, 2 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-ne 2368 |
| This theorem is referenced by: neqne 2375 tfr1onlemsucaccv 6408 tfrcllemsucaccv 6421 enpr2d 6885 djune 7153 omp1eomlem 7169 difinfsn 7175 nnnninfeq2 7204 nninfisol 7208 netap 7337 2omotaplemap 7340 exmidapne 7343 xaddf 9936 xaddval 9937 xleaddadd 9979 flqltnz 10394 zfz1iso 10950 bezoutlemle 12200 eucalgval2 12246 eucalglt 12250 isprm2 12310 sqne2sq 12370 nnoddn2prmb 12456 ennnfonelemim 12666 ctinfomlemom 12669 hashfinmndnn 13134 logbgcd1irraplemexp 15288 lgsfcl2 15331 lgscllem 15332 lgsval2lem 15335 bj-charfunbi 15541 nnsf 15736 peano3nninf 15738 neapmkvlem 15798 |
| Copyright terms: Public domain | W3C validator |