ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neqned Unicode version

Theorem neqned 2347
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2361. One-way deduction form of df-ne 2341. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2390. (Revised by Wolf Lammen, 22-Nov-2019.)
Hypothesis
Ref Expression
neqned.1  |-  ( ph  ->  -.  A  =  B )
Assertion
Ref Expression
neqned  |-  ( ph  ->  A  =/=  B )

Proof of Theorem neqned
StepHypRef Expression
1 neqned.1 . 2  |-  ( ph  ->  -.  A  =  B )
2 df-ne 2341 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
31, 2sylibr 133 1  |-  ( ph  ->  A  =/=  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1348    =/= wne 2340
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-ne 2341
This theorem is referenced by:  neqne  2348  tfr1onlemsucaccv  6320  tfrcllemsucaccv  6333  enpr2d  6795  djune  7055  omp1eomlem  7071  difinfsn  7077  nnnninfeq2  7105  nninfisol  7109  xaddf  9801  xaddval  9802  xleaddadd  9844  flqltnz  10243  zfz1iso  10776  bezoutlemle  11963  eucalgval2  12007  eucalglt  12011  lcmval  12017  lcmcllem  12021  isprm2  12071  sqne2sq  12131  nnoddn2prmb  12216  ennnfonelemim  12379  ctinfomlemom  12382  hashfinmndnn  12668  logbgcd1irraplemexp  13680  lgsfcl2  13701  lgscllem  13702  lgsval2lem  13705  bj-charfunbi  13846  nnsf  14038  peano3nninf  14040  neapmkvlem  14098
  Copyright terms: Public domain W3C validator