![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > neqned | Unicode version |
Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2385. One-way deduction form of df-ne 2365. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2414. (Revised by Wolf Lammen, 22-Nov-2019.) |
Ref | Expression |
---|---|
neqned.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
neqned |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neqned.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | df-ne 2365 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylibr 134 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-ne 2365 |
This theorem is referenced by: neqne 2372 tfr1onlemsucaccv 6396 tfrcllemsucaccv 6409 enpr2d 6873 djune 7139 omp1eomlem 7155 difinfsn 7161 nnnninfeq2 7190 nninfisol 7194 netap 7316 2omotaplemap 7319 exmidapne 7322 xaddf 9913 xaddval 9914 xleaddadd 9956 flqltnz 10359 zfz1iso 10915 bezoutlemle 12148 eucalgval2 12194 eucalglt 12198 isprm2 12258 sqne2sq 12318 nnoddn2prmb 12403 ennnfonelemim 12584 ctinfomlemom 12587 hashfinmndnn 13016 logbgcd1irraplemexp 15141 lgsfcl2 15163 lgscllem 15164 lgsval2lem 15167 bj-charfunbi 15373 nnsf 15565 peano3nninf 15567 neapmkvlem 15627 |
Copyright terms: Public domain | W3C validator |