| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > neqned | Unicode version | ||
| Description: If it is not the case that two classes are equal, they are unequal. Converse of neneqd 2398. One-way deduction form of df-ne 2378. (Contributed by David Moews, 28-Feb-2017.) Allow a shortening of necon3bi 2427. (Revised by Wolf Lammen, 22-Nov-2019.) |
| Ref | Expression |
|---|---|
| neqned.1 |
|
| Ref | Expression |
|---|---|
| neqned |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neqned.1 |
. 2
| |
| 2 | df-ne 2378 |
. 2
| |
| 3 | 1, 2 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-ne 2378 |
| This theorem is referenced by: neqne 2385 tfr1onlemsucaccv 6440 tfrcllemsucaccv 6453 enpr2d 6925 djune 7195 omp1eomlem 7211 difinfsn 7217 nnnninfeq2 7246 nninfisol 7250 netap 7386 2omotaplemap 7389 exmidapne 7392 xaddf 9986 xaddval 9987 xleaddadd 10029 flqltnz 10452 zfz1iso 11008 bezoutlemle 12404 eucalgval2 12450 eucalglt 12454 isprm2 12514 sqne2sq 12574 nnoddn2prmb 12660 ennnfonelemim 12870 ctinfomlemom 12873 hashfinmndnn 13339 logbgcd1irraplemexp 15515 lgsfcl2 15558 lgscllem 15559 lgsval2lem 15562 bj-charfunbi 15885 nnsf 16083 peano3nninf 16085 neapmkvlem 16147 |
| Copyright terms: Public domain | W3C validator |