Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nn0n0n1ge2b | Unicode version |
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
Ref | Expression |
---|---|
nn0n0n1ge2b |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0n0n1ge2 9213 | . . 3 | |
2 | 1 | 3expib 1185 | . 2 |
3 | nn0z 9166 | . . . . . 6 | |
4 | 0z 9157 | . . . . . 6 | |
5 | zdceq 9218 | . . . . . 6 DECID | |
6 | 3, 4, 5 | sylancl 410 | . . . . 5 DECID |
7 | 6 | dcned 2330 | . . . 4 DECID |
8 | 1z 9172 | . . . . . 6 | |
9 | zdceq 9218 | . . . . . 6 DECID | |
10 | 3, 8, 9 | sylancl 410 | . . . . 5 DECID |
11 | 10 | dcned 2330 | . . . 4 DECID |
12 | dcan 919 | . . . 4 DECID DECID DECID | |
13 | 7, 11, 12 | sylc 62 | . . 3 DECID |
14 | ianordc 885 | . . . . . 6 DECID | |
15 | 7, 14 | syl 14 | . . . . 5 |
16 | nnedc 2329 | . . . . . . 7 DECID | |
17 | 6, 16 | syl 14 | . . . . . 6 |
18 | nnedc 2329 | . . . . . . 7 DECID | |
19 | 10, 18 | syl 14 | . . . . . 6 |
20 | 17, 19 | orbi12d 783 | . . . . 5 |
21 | 15, 20 | bitrd 187 | . . . 4 |
22 | 2pos 8903 | . . . . . . . . . 10 | |
23 | breq1 3964 | . . . . . . . . . 10 | |
24 | 22, 23 | mpbiri 167 | . . . . . . . . 9 |
25 | 24 | a1d 22 | . . . . . . . 8 |
26 | 1lt2 8981 | . . . . . . . . . 10 | |
27 | breq1 3964 | . . . . . . . . . 10 | |
28 | 26, 27 | mpbiri 167 | . . . . . . . . 9 |
29 | 28 | a1d 22 | . . . . . . . 8 |
30 | 25, 29 | jaoi 706 | . . . . . . 7 |
31 | 30 | impcom 124 | . . . . . 6 |
32 | 2z 9174 | . . . . . . . 8 | |
33 | zltnle 9192 | . . . . . . . 8 | |
34 | 3, 32, 33 | sylancl 410 | . . . . . . 7 |
35 | 34 | adantr 274 | . . . . . 6 |
36 | 31, 35 | mpbid 146 | . . . . 5 |
37 | 36 | ex 114 | . . . 4 |
38 | 21, 37 | sylbid 149 | . . 3 |
39 | condc 839 | . . 3 DECID | |
40 | 13, 38, 39 | sylc 62 | . 2 |
41 | 2, 40 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wo 698 DECID wdc 820 wceq 1332 wcel 2125 wne 2324 class class class wbr 3961 cc0 7711 c1 7712 clt 7891 cle 7892 c2 8863 cn0 9069 cz 9146 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-sep 4078 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-addcom 7811 ax-addass 7813 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-0id 7819 ax-rnegex 7820 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-ltadd 7827 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-br 3962 df-opab 4022 df-id 4248 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-iota 5128 df-fun 5165 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-inn 8813 df-2 8871 df-n0 9070 df-z 9147 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |