| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nn0n0n1ge2b | Unicode version | ||
| Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.) |
| Ref | Expression |
|---|---|
| nn0n0n1ge2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0n0n1ge2 9396 |
. . 3
| |
| 2 | 1 | 3expib 1208 |
. 2
|
| 3 | nn0z 9346 |
. . . . . 6
| |
| 4 | 0z 9337 |
. . . . . 6
| |
| 5 | zdceq 9401 |
. . . . . 6
| |
| 6 | 3, 4, 5 | sylancl 413 |
. . . . 5
|
| 7 | 6 | dcned 2373 |
. . . 4
|
| 8 | 1z 9352 |
. . . . . 6
| |
| 9 | zdceq 9401 |
. . . . . 6
| |
| 10 | 3, 8, 9 | sylancl 413 |
. . . . 5
|
| 11 | 10 | dcned 2373 |
. . . 4
|
| 12 | 7, 11 | dcand 934 |
. . 3
|
| 13 | ianordc 900 |
. . . . . 6
| |
| 14 | 7, 13 | syl 14 |
. . . . 5
|
| 15 | nnedc 2372 |
. . . . . . 7
| |
| 16 | 6, 15 | syl 14 |
. . . . . 6
|
| 17 | nnedc 2372 |
. . . . . . 7
| |
| 18 | 10, 17 | syl 14 |
. . . . . 6
|
| 19 | 16, 18 | orbi12d 794 |
. . . . 5
|
| 20 | 14, 19 | bitrd 188 |
. . . 4
|
| 21 | 2pos 9081 |
. . . . . . . . . 10
| |
| 22 | breq1 4036 |
. . . . . . . . . 10
| |
| 23 | 21, 22 | mpbiri 168 |
. . . . . . . . 9
|
| 24 | 23 | a1d 22 |
. . . . . . . 8
|
| 25 | 1lt2 9160 |
. . . . . . . . . 10
| |
| 26 | breq1 4036 |
. . . . . . . . . 10
| |
| 27 | 25, 26 | mpbiri 168 |
. . . . . . . . 9
|
| 28 | 27 | a1d 22 |
. . . . . . . 8
|
| 29 | 24, 28 | jaoi 717 |
. . . . . . 7
|
| 30 | 29 | impcom 125 |
. . . . . 6
|
| 31 | 2z 9354 |
. . . . . . . 8
| |
| 32 | zltnle 9372 |
. . . . . . . 8
| |
| 33 | 3, 31, 32 | sylancl 413 |
. . . . . . 7
|
| 34 | 33 | adantr 276 |
. . . . . 6
|
| 35 | 30, 34 | mpbid 147 |
. . . . 5
|
| 36 | 35 | ex 115 |
. . . 4
|
| 37 | 20, 36 | sylbid 150 |
. . 3
|
| 38 | condc 854 |
. . 3
| |
| 39 | 12, 37, 38 | sylc 62 |
. 2
|
| 40 | 2, 39 | impbid 129 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-ltadd 7995 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-n0 9250 df-z 9327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |