ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0n0n1ge2b Unicode version

Theorem nn0n0n1ge2b 9399
Description: A nonnegative integer is neither 0 nor 1 if and only if it is greater than or equal to 2. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
nn0n0n1ge2b  |-  ( N  e.  NN0  ->  ( ( N  =/=  0  /\  N  =/=  1 )  <->  2  <_  N )
)

Proof of Theorem nn0n0n1ge2b
StepHypRef Expression
1 nn0n0n1ge2 9390 . . 3  |-  ( ( N  e.  NN0  /\  N  =/=  0  /\  N  =/=  1 )  ->  2  <_  N )
213expib 1208 . 2  |-  ( N  e.  NN0  ->  ( ( N  =/=  0  /\  N  =/=  1 )  ->  2  <_  N
) )
3 nn0z 9340 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
4 0z 9331 . . . . . 6  |-  0  e.  ZZ
5 zdceq 9395 . . . . . 6  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
63, 4, 5sylancl 413 . . . . 5  |-  ( N  e.  NN0  -> DECID  N  =  0
)
76dcned 2370 . . . 4  |-  ( N  e.  NN0  -> DECID  N  =/=  0
)
8 1z 9346 . . . . . 6  |-  1  e.  ZZ
9 zdceq 9395 . . . . . 6  |-  ( ( N  e.  ZZ  /\  1  e.  ZZ )  -> DECID  N  =  1 )
103, 8, 9sylancl 413 . . . . 5  |-  ( N  e.  NN0  -> DECID  N  =  1
)
1110dcned 2370 . . . 4  |-  ( N  e.  NN0  -> DECID  N  =/=  1
)
127, 11dcand 934 . . 3  |-  ( N  e.  NN0  -> DECID  ( N  =/=  0  /\  N  =/=  1
) )
13 ianordc 900 . . . . . 6  |-  (DECID  N  =/=  0  ->  ( -.  ( N  =/=  0  /\  N  =/=  1
)  <->  ( -.  N  =/=  0  \/  -.  N  =/=  1 ) ) )
147, 13syl 14 . . . . 5  |-  ( N  e.  NN0  ->  ( -.  ( N  =/=  0  /\  N  =/=  1
)  <->  ( -.  N  =/=  0  \/  -.  N  =/=  1 ) ) )
15 nnedc 2369 . . . . . . 7  |-  (DECID  N  =  0  ->  ( -.  N  =/=  0  <->  N  = 
0 ) )
166, 15syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  ( -.  N  =/=  0  <->  N  =  0 ) )
17 nnedc 2369 . . . . . . 7  |-  (DECID  N  =  1  ->  ( -.  N  =/=  1  <->  N  = 
1 ) )
1810, 17syl 14 . . . . . 6  |-  ( N  e.  NN0  ->  ( -.  N  =/=  1  <->  N  =  1 ) )
1916, 18orbi12d 794 . . . . 5  |-  ( N  e.  NN0  ->  ( ( -.  N  =/=  0  \/  -.  N  =/=  1
)  <->  ( N  =  0  \/  N  =  1 ) ) )
2014, 19bitrd 188 . . . 4  |-  ( N  e.  NN0  ->  ( -.  ( N  =/=  0  /\  N  =/=  1
)  <->  ( N  =  0  \/  N  =  1 ) ) )
21 2pos 9075 . . . . . . . . . 10  |-  0  <  2
22 breq1 4033 . . . . . . . . . 10  |-  ( N  =  0  ->  ( N  <  2  <->  0  <  2 ) )
2321, 22mpbiri 168 . . . . . . . . 9  |-  ( N  =  0  ->  N  <  2 )
2423a1d 22 . . . . . . . 8  |-  ( N  =  0  ->  ( N  e.  NN0  ->  N  <  2 ) )
25 1lt2 9154 . . . . . . . . . 10  |-  1  <  2
26 breq1 4033 . . . . . . . . . 10  |-  ( N  =  1  ->  ( N  <  2  <->  1  <  2 ) )
2725, 26mpbiri 168 . . . . . . . . 9  |-  ( N  =  1  ->  N  <  2 )
2827a1d 22 . . . . . . . 8  |-  ( N  =  1  ->  ( N  e.  NN0  ->  N  <  2 ) )
2924, 28jaoi 717 . . . . . . 7  |-  ( ( N  =  0  \/  N  =  1 )  ->  ( N  e. 
NN0  ->  N  <  2
) )
3029impcom 125 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( N  =  0  \/  N  =  1
) )  ->  N  <  2 )
31 2z 9348 . . . . . . . 8  |-  2  e.  ZZ
32 zltnle 9366 . . . . . . . 8  |-  ( ( N  e.  ZZ  /\  2  e.  ZZ )  ->  ( N  <  2  <->  -.  2  <_  N )
)
333, 31, 32sylancl 413 . . . . . . 7  |-  ( N  e.  NN0  ->  ( N  <  2  <->  -.  2  <_  N ) )
3433adantr 276 . . . . . 6  |-  ( ( N  e.  NN0  /\  ( N  =  0  \/  N  =  1
) )  ->  ( N  <  2  <->  -.  2  <_  N ) )
3530, 34mpbid 147 . . . . 5  |-  ( ( N  e.  NN0  /\  ( N  =  0  \/  N  =  1
) )  ->  -.  2  <_  N )
3635ex 115 . . . 4  |-  ( N  e.  NN0  ->  ( ( N  =  0  \/  N  =  1 )  ->  -.  2  <_  N ) )
3720, 36sylbid 150 . . 3  |-  ( N  e.  NN0  ->  ( -.  ( N  =/=  0  /\  N  =/=  1
)  ->  -.  2  <_  N ) )
38 condc 854 . . 3  |-  (DECID  ( N  =/=  0  /\  N  =/=  1 )  ->  (
( -.  ( N  =/=  0  /\  N  =/=  1 )  ->  -.  2  <_  N )  -> 
( 2  <_  N  ->  ( N  =/=  0  /\  N  =/=  1
) ) ) )
3912, 37, 38sylc 62 . 2  |-  ( N  e.  NN0  ->  ( 2  <_  N  ->  ( N  =/=  0  /\  N  =/=  1 ) ) )
402, 39impbid 129 1  |-  ( N  e.  NN0  ->  ( ( N  =/=  0  /\  N  =/=  1 )  <->  2  <_  N )
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   class class class wbr 4030   0cc0 7874   1c1 7875    < clt 8056    <_ cle 8057   2c2 9035   NN0cn0 9243   ZZcz 9320
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-2 9043  df-n0 9244  df-z 9321
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator