| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isacnm | Unicode version | ||
| Description: The property of being a
choice set of length |
| Ref | Expression |
|---|---|
| isacnm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 3620 |
. . . . . . 7
| |
| 2 | 1 | rabeqdv 2767 |
. . . . . 6
|
| 3 | 2 | oveq1d 5966 |
. . . . 5
|
| 4 | 3 | raleqdv 2709 |
. . . 4
|
| 5 | 4 | anbi2d 464 |
. . 3
|
| 6 | df-acnm 7294 |
. . 3
| |
| 7 | 5, 6 | elab2g 2921 |
. 2
|
| 8 | elex 2784 |
. . 3
| |
| 9 | biid 171 |
. . . 4
| |
| 10 | 9 | baib 921 |
. . 3
|
| 11 | 8, 10 | syl 14 |
. 2
|
| 12 | 7, 11 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 df-acnm 7294 |
| This theorem is referenced by: finacn 7323 acnccim 7391 |
| Copyright terms: Public domain | W3C validator |