| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isacnm | Unicode version | ||
| Description: The property of being a
choice set of length |
| Ref | Expression |
|---|---|
| isacnm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq 3632 |
. . . . . . 7
| |
| 2 | 1 | rabeqdv 2773 |
. . . . . 6
|
| 3 | 2 | oveq1d 5989 |
. . . . 5
|
| 4 | 3 | raleqdv 2714 |
. . . 4
|
| 5 | 4 | anbi2d 464 |
. . 3
|
| 6 | df-acnm 7320 |
. . 3
| |
| 7 | 5, 6 | elab2g 2930 |
. 2
|
| 8 | elex 2791 |
. . 3
| |
| 9 | biid 171 |
. . . 4
| |
| 10 | 9 | baib 923 |
. . 3
|
| 11 | 8, 10 | syl 14 |
. 2
|
| 12 | 7, 11 | sylan9bb 462 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 df-acnm 7320 |
| This theorem is referenced by: finacn 7354 acnccim 7426 |
| Copyright terms: Public domain | W3C validator |