| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acneq | Unicode version | ||
| Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2269 |
. . . 4
| |
| 2 | oveq2 5959 |
. . . . 5
| |
| 3 | raleq 2703 |
. . . . . 6
| |
| 4 | 3 | exbidv 1849 |
. . . . 5
|
| 5 | 2, 4 | raleqbidv 2719 |
. . . 4
|
| 6 | 1, 5 | anbi12d 473 |
. . 3
|
| 7 | 6 | abbidv 2324 |
. 2
|
| 8 | df-acnm 7294 |
. 2
| |
| 9 | df-acnm 7294 |
. 2
| |
| 10 | 7, 8, 9 | 3eqtr4g 2264 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-iota 5237 df-fv 5284 df-ov 5954 df-acnm 7294 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |