| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > acneq | Unicode version | ||
| Description: Equality theorem for the choice set function. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acneq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 2272 |
. . . 4
| |
| 2 | oveq2 5982 |
. . . . 5
| |
| 3 | raleq 2708 |
. . . . . 6
| |
| 4 | 3 | exbidv 1851 |
. . . . 5
|
| 5 | 2, 4 | raleqbidv 2724 |
. . . 4
|
| 6 | 1, 5 | anbi12d 473 |
. . 3
|
| 7 | 6 | abbidv 2327 |
. 2
|
| 8 | df-acnm 7320 |
. 2
| |
| 9 | df-acnm 7320 |
. 2
| |
| 10 | 7, 8, 9 | 3eqtr4g 2267 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-iota 5254 df-fv 5302 df-ov 5977 df-acnm 7320 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |