ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-enr Unicode version

Definition df-enr 7667
Description: Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
Assertion
Ref Expression
df-enr  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
Distinct variable group:    x, y, z, w, v, u

Detailed syntax breakdown of Definition df-enr
StepHypRef Expression
1 cer 7237 . 2  class  ~R
2 vx . . . . . . 7  setvar  x
32cv 1342 . . . . . 6  class  x
4 cnp 7232 . . . . . . 7  class  P.
54, 4cxp 4602 . . . . . 6  class  ( P. 
X.  P. )
63, 5wcel 2136 . . . . 5  wff  x  e.  ( P.  X.  P. )
7 vy . . . . . . 7  setvar  y
87cv 1342 . . . . . 6  class  y
98, 5wcel 2136 . . . . 5  wff  y  e.  ( P.  X.  P. )
106, 9wa 103 . . . 4  wff  ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )
11 vz . . . . . . . . . . . . 13  setvar  z
1211cv 1342 . . . . . . . . . . . 12  class  z
13 vw . . . . . . . . . . . . 13  setvar  w
1413cv 1342 . . . . . . . . . . . 12  class  w
1512, 14cop 3579 . . . . . . . . . . 11  class  <. z ,  w >.
163, 15wceq 1343 . . . . . . . . . 10  wff  x  = 
<. z ,  w >.
17 vv . . . . . . . . . . . . 13  setvar  v
1817cv 1342 . . . . . . . . . . . 12  class  v
19 vu . . . . . . . . . . . . 13  setvar  u
2019cv 1342 . . . . . . . . . . . 12  class  u
2118, 20cop 3579 . . . . . . . . . . 11  class  <. v ,  u >.
228, 21wceq 1343 . . . . . . . . . 10  wff  y  = 
<. v ,  u >.
2316, 22wa 103 . . . . . . . . 9  wff  ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )
24 cpp 7234 . . . . . . . . . . 11  class  +P.
2512, 20, 24co 5842 . . . . . . . . . 10  class  ( z  +P.  u )
2614, 18, 24co 5842 . . . . . . . . . 10  class  ( w  +P.  v )
2725, 26wceq 1343 . . . . . . . . 9  wff  ( z  +P.  u )  =  ( w  +P.  v
)
2823, 27wa 103 . . . . . . . 8  wff  ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u )  =  ( w  +P.  v
) )
2928, 19wex 1480 . . . . . . 7  wff  E. u
( ( x  = 
<. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  (
z  +P.  u )  =  ( w  +P.  v ) )
3029, 17wex 1480 . . . . . 6  wff  E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) )
3130, 13wex 1480 . . . . 5  wff  E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u )  =  ( w  +P.  v
) )
3231, 11wex 1480 . . . 4  wff  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) )
3310, 32wa 103 . . 3  wff  ( ( x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) )
3433, 2, 7copab 4042 . 2  class  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
351, 34wceq 1343 1  wff  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
Colors of variables: wff set class
This definition is referenced by:  enrbreq  7675  enrer  7676  enrex  7678  prsrlem1  7683
  Copyright terms: Public domain W3C validator