ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexpr Unicode version

Theorem suplocexpr 7557
Description: An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexpr  |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable groups:    y, A, z, x    ph, y, z, x

Proof of Theorem suplocexpr
Dummy variables  a  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . 3  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . 3  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
4 breq1 3940 . . . . . 6  |-  ( a  =  w  ->  (
a  <Q  u  <->  w  <Q  u ) )
54cbvrexv 2658 . . . . 5  |-  ( E. a  e.  |^| ( 2nd " A ) a 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  u )
65rabbii 2675 . . . 4  |-  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u }  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }
76opeq2i 3717 . . 3  |-  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
81, 2, 3, 7suplocexprlemex 7554 . 2  |-  ( ph  -> 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  e.  P. )
91, 2, 3, 7suplocexprlemub 7555 . 2  |-  ( ph  ->  A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y )
101, 2, 3, 7suplocexprlemlub 7556 . . 3  |-  ( ph  ->  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) )
1110ralrimivw 2509 . 2  |-  ( ph  ->  A. y  e.  P.  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) )
12 breq1 3940 . . . . . 6  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( x  <P  y  <->  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y ) )
1312notbid 657 . . . . 5  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( -.  x  <P  y  <->  -.  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  <P  y ) )
1413ralbidv 2438 . . . 4  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( A. y  e.  A  -.  x  <P  y  <->  A. y  e.  A  -.  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  <P  y ) )
15 breq2 3941 . . . . . 6  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( y  <P  x  <->  y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >. ) )
1615imbi1d 230 . . . . 5  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( (
y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  ( y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )
1716ralbidv 2438 . . . 4  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  A. y  e.  P.  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )
1814, 17anbi12d 465 . . 3  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) )  <->  ( A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y  /\  A. y  e.  P.  (
y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) ) )
1918rspcev 2793 . 2  |-  ( (
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  e.  P.  /\  ( A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y  /\  A. y  e.  P.  (
y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
208, 9, 11, 19syl12anc 1215 1  |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1332   E.wex 1469    e. wcel 1481   A.wral 2417   E.wrex 2418   {crab 2421   <.cop 3535   U.cuni 3744   |^|cint 3779   class class class wbr 3937   "cima 4550   1stc1st 6044   2ndc2nd 6045   Q.cnq 7112    <Q cltq 7117   P.cnp 7123    <P cltp 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-eprel 4219  df-id 4223  df-po 4226  df-iso 4227  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-1st 6046  df-2nd 6047  df-recs 6210  df-irdg 6275  df-1o 6321  df-2o 6322  df-oadd 6325  df-omul 6326  df-er 6437  df-ec 6439  df-qs 6443  df-ni 7136  df-pli 7137  df-mi 7138  df-lti 7139  df-plpq 7176  df-mpq 7177  df-enq 7179  df-nqqs 7180  df-plqqs 7181  df-mqqs 7182  df-1nqqs 7183  df-rq 7184  df-ltnqqs 7185  df-enq0 7256  df-nq0 7257  df-0nq0 7258  df-plq0 7259  df-mq0 7260  df-inp 7298  df-iltp 7302
This theorem is referenced by:  suplocsrlempr  7639
  Copyright terms: Public domain W3C validator