ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexpr Unicode version

Theorem suplocexpr 7753
Description: An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexpr  |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable groups:    y, A, z, x    ph, y, z, x

Proof of Theorem suplocexpr
Dummy variables  a  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . 3  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . 3  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
4 breq1 4021 . . . . . 6  |-  ( a  =  w  ->  (
a  <Q  u  <->  w  <Q  u ) )
54cbvrexv 2719 . . . . 5  |-  ( E. a  e.  |^| ( 2nd " A ) a 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  u )
65rabbii 2738 . . . 4  |-  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u }  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }
76opeq2i 3797 . . 3  |-  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
81, 2, 3, 7suplocexprlemex 7750 . 2  |-  ( ph  -> 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  e.  P. )
91, 2, 3, 7suplocexprlemub 7751 . 2  |-  ( ph  ->  A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y )
101, 2, 3, 7suplocexprlemlub 7752 . . 3  |-  ( ph  ->  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) )
1110ralrimivw 2564 . 2  |-  ( ph  ->  A. y  e.  P.  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) )
12 breq1 4021 . . . . . 6  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( x  <P  y  <->  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y ) )
1312notbid 668 . . . . 5  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( -.  x  <P  y  <->  -.  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  <P  y ) )
1413ralbidv 2490 . . . 4  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( A. y  e.  A  -.  x  <P  y  <->  A. y  e.  A  -.  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  <P  y ) )
15 breq2 4022 . . . . . 6  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( y  <P  x  <->  y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >. ) )
1615imbi1d 231 . . . . 5  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( (
y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  ( y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )
1716ralbidv 2490 . . . 4  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  A. y  e.  P.  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )
1814, 17anbi12d 473 . . 3  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) )  <->  ( A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y  /\  A. y  e.  P.  (
y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) ) )
1918rspcev 2856 . 2  |-  ( (
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  e.  P.  /\  ( A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y  /\  A. y  e.  P.  (
y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
208, 9, 11, 19syl12anc 1247 1  |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2160   A.wral 2468   E.wrex 2469   {crab 2472   <.cop 3610   U.cuni 3824   |^|cint 3859   class class class wbr 4018   "cima 4647   1stc1st 6162   2ndc2nd 6163   Q.cnq 7308    <Q cltq 7313   P.cnp 7319    <P cltp 7323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-1o 6440  df-2o 6441  df-oadd 6444  df-omul 6445  df-er 6558  df-ec 6560  df-qs 6564  df-ni 7332  df-pli 7333  df-mi 7334  df-lti 7335  df-plpq 7372  df-mpq 7373  df-enq 7375  df-nqqs 7376  df-plqqs 7377  df-mqqs 7378  df-1nqqs 7379  df-rq 7380  df-ltnqqs 7381  df-enq0 7452  df-nq0 7453  df-0nq0 7454  df-plq0 7455  df-mq0 7456  df-inp 7494  df-iltp 7498
This theorem is referenced by:  suplocsrlempr  7835
  Copyright terms: Public domain W3C validator