ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexpr Unicode version

Theorem suplocexpr 7787
Description: An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexpr  |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable groups:    y, A, z, x    ph, y, z, x

Proof of Theorem suplocexpr
Dummy variables  a  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . 3  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . 3  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
4 breq1 4033 . . . . . 6  |-  ( a  =  w  ->  (
a  <Q  u  <->  w  <Q  u ) )
54cbvrexv 2727 . . . . 5  |-  ( E. a  e.  |^| ( 2nd " A ) a 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  u )
65rabbii 2746 . . . 4  |-  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u }  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }
76opeq2i 3809 . . 3  |-  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
81, 2, 3, 7suplocexprlemex 7784 . 2  |-  ( ph  -> 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  e.  P. )
91, 2, 3, 7suplocexprlemub 7785 . 2  |-  ( ph  ->  A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y )
101, 2, 3, 7suplocexprlemlub 7786 . . 3  |-  ( ph  ->  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) )
1110ralrimivw 2568 . 2  |-  ( ph  ->  A. y  e.  P.  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) )
12 breq1 4033 . . . . . 6  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( x  <P  y  <->  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y ) )
1312notbid 668 . . . . 5  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( -.  x  <P  y  <->  -.  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  <P  y ) )
1413ralbidv 2494 . . . 4  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( A. y  e.  A  -.  x  <P  y  <->  A. y  e.  A  -.  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  <P  y ) )
15 breq2 4034 . . . . . 6  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( y  <P  x  <->  y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >. ) )
1615imbi1d 231 . . . . 5  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( (
y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  ( y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )
1716ralbidv 2494 . . . 4  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  A. y  e.  P.  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )
1814, 17anbi12d 473 . . 3  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) )  <->  ( A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y  /\  A. y  e.  P.  (
y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) ) )
1918rspcev 2865 . 2  |-  ( (
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  e.  P.  /\  ( A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y  /\  A. y  e.  P.  (
y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
208, 9, 11, 19syl12anc 1247 1  |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1503    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476   <.cop 3622   U.cuni 3836   |^|cint 3871   class class class wbr 4030   "cima 4663   1stc1st 6193   2ndc2nd 6194   Q.cnq 7342    <Q cltq 7347   P.cnp 7353    <P cltp 7357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-eprel 4321  df-id 4325  df-po 4328  df-iso 4329  df-iord 4398  df-on 4400  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-irdg 6425  df-1o 6471  df-2o 6472  df-oadd 6475  df-omul 6476  df-er 6589  df-ec 6591  df-qs 6595  df-ni 7366  df-pli 7367  df-mi 7368  df-lti 7369  df-plpq 7406  df-mpq 7407  df-enq 7409  df-nqqs 7410  df-plqqs 7411  df-mqqs 7412  df-1nqqs 7413  df-rq 7414  df-ltnqqs 7415  df-enq0 7486  df-nq0 7487  df-0nq0 7488  df-plq0 7489  df-mq0 7490  df-inp 7528  df-iltp 7532
This theorem is referenced by:  suplocsrlempr  7869
  Copyright terms: Public domain W3C validator