ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suplocexpr Unicode version

Theorem suplocexpr 7912
Description: An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
Hypotheses
Ref Expression
suplocexpr.m  |-  ( ph  ->  E. x  x  e.  A )
suplocexpr.ub  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
suplocexpr.loc  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
Assertion
Ref Expression
suplocexpr  |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Distinct variable groups:    y, A, z, x    ph, y, z, x

Proof of Theorem suplocexpr
Dummy variables  a  u  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suplocexpr.m . . 3  |-  ( ph  ->  E. x  x  e.  A )
2 suplocexpr.ub . . 3  |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
<P  x )
3 suplocexpr.loc . . 3  |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  (
x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )
4 breq1 4086 . . . . . 6  |-  ( a  =  w  ->  (
a  <Q  u  <->  w  <Q  u ) )
54cbvrexv 2766 . . . . 5  |-  ( E. a  e.  |^| ( 2nd " A ) a 
<Q  u  <->  E. w  e.  |^| ( 2nd " A ) w  <Q  u )
65rabbii 2785 . . . 4  |-  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u }  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u }
76opeq2i 3861 . . 3  |-  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A
) w  <Q  u } >.
81, 2, 3, 7suplocexprlemex 7909 . 2  |-  ( ph  -> 
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  e.  P. )
91, 2, 3, 7suplocexprlemub 7910 . 2  |-  ( ph  ->  A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y )
101, 2, 3, 7suplocexprlemlub 7911 . . 3  |-  ( ph  ->  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) )
1110ralrimivw 2604 . 2  |-  ( ph  ->  A. y  e.  P.  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) )
12 breq1 4086 . . . . . 6  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( x  <P  y  <->  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y ) )
1312notbid 671 . . . . 5  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( -.  x  <P  y  <->  -.  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  <P  y ) )
1413ralbidv 2530 . . . 4  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( A. y  e.  A  -.  x  <P  y  <->  A. y  e.  A  -.  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  <P  y ) )
15 breq2 4087 . . . . . 6  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( y  <P  x  <->  y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >. ) )
1615imbi1d 231 . . . . 5  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( (
y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  ( y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )
1716ralbidv 2530 . . . 4  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z )  <->  A. y  e.  P.  ( y  <P  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A ) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )
1814, 17anbi12d 473 . . 3  |-  ( x  =  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  ( ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) )  <->  ( A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y  /\  A. y  e.  P.  (
y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) ) )
1918rspcev 2907 . 2  |-  ( (
<. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  e.  P.  /\  ( A. y  e.  A  -.  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  <P  y  /\  A. y  e.  P.  (
y  <P  <. U. ( 1st " A
) ,  { u  e.  Q.  |  E. a  e.  |^| ( 2nd " A
) a  <Q  u } >.  ->  E. z  e.  A  y  <P  z ) ) )  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
208, 9, 11, 19syl12anc 1269 1  |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y  /\  A. y  e.  P.  (
y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512   <.cop 3669   U.cuni 3888   |^|cint 3923   class class class wbr 4083   "cima 4722   1stc1st 6284   2ndc2nd 6285   Q.cnq 7467    <Q cltq 7472   P.cnp 7478    <P cltp 7482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-eprel 4380  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-1o 6562  df-2o 6563  df-oadd 6566  df-omul 6567  df-er 6680  df-ec 6682  df-qs 6686  df-ni 7491  df-pli 7492  df-mi 7493  df-lti 7494  df-plpq 7531  df-mpq 7532  df-enq 7534  df-nqqs 7535  df-plqqs 7536  df-mqqs 7537  df-1nqqs 7538  df-rq 7539  df-ltnqqs 7540  df-enq0 7611  df-nq0 7612  df-0nq0 7613  df-plq0 7614  df-mq0 7615  df-inp 7653  df-iltp 7657
This theorem is referenced by:  suplocsrlempr  7994
  Copyright terms: Public domain W3C validator