ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enrex Unicode version

Theorem enrex 7832
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.)
Assertion
Ref Expression
enrex  |-  ~R  e.  _V

Proof of Theorem enrex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npex 7568 . . . 4  |-  P.  e.  _V
21, 1xpex 4788 . . 3  |-  ( P. 
X.  P. )  e.  _V
32, 2xpex 4788 . 2  |-  ( ( P.  X.  P. )  X.  ( P.  X.  P. ) )  e.  _V
4 df-enr 7821 . . 3  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
5 opabssxp 4747 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }  C_  (
( P.  X.  P. )  X.  ( P.  X.  P. ) )
64, 5eqsstri 3224 . 2  |-  ~R  C_  (
( P.  X.  P. )  X.  ( P.  X.  P. ) )
73, 6ssexi 4181 1  |-  ~R  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1372   E.wex 1514    e. wcel 2175   _Vcvv 2771   <.cop 3635   {copab 4103    X. cxp 4671  (class class class)co 5934   P.cnp 7386    +P. cpp 7388    ~R cer 7391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-qs 6616  df-ni 7399  df-nqqs 7443  df-inp 7561  df-enr 7821
This theorem is referenced by:  addsrpr  7840  mulsrpr  7841  ltsrprg  7842  0r  7845  1sr  7846  m1r  7847  addclsr  7848  mulclsr  7849  recexgt0sr  7868  prsrcl  7879  ltpsrprg  7898  mappsrprg  7899  suplocsrlemb  7901  pitonnlem2  7942  pitonn  7943  pitore  7945  recnnre  7946
  Copyright terms: Public domain W3C validator