ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enrex Unicode version

Theorem enrex 7738
Description: The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.)
Assertion
Ref Expression
enrex  |-  ~R  e.  _V

Proof of Theorem enrex
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 npex 7474 . . . 4  |-  P.  e.  _V
21, 1xpex 4743 . . 3  |-  ( P. 
X.  P. )  e.  _V
32, 2xpex 4743 . 2  |-  ( ( P.  X.  P. )  X.  ( P.  X.  P. ) )  e.  _V
4 df-enr 7727 . . 3  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
5 opabssxp 4702 . . 3  |-  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }  C_  (
( P.  X.  P. )  X.  ( P.  X.  P. ) )
64, 5eqsstri 3189 . 2  |-  ~R  C_  (
( P.  X.  P. )  X.  ( P.  X.  P. ) )
73, 6ssexi 4143 1  |-  ~R  e.  _V
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1492    e. wcel 2148   _Vcvv 2739   <.cop 3597   {copab 4065    X. cxp 4626  (class class class)co 5877   P.cnp 7292    +P. cpp 7294    ~R cer 7297
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-qs 6543  df-ni 7305  df-nqqs 7349  df-inp 7467  df-enr 7727
This theorem is referenced by:  addsrpr  7746  mulsrpr  7747  ltsrprg  7748  0r  7751  1sr  7752  m1r  7753  addclsr  7754  mulclsr  7755  recexgt0sr  7774  prsrcl  7785  ltpsrprg  7804  mappsrprg  7805  suplocsrlemb  7807  pitonnlem2  7848  pitonn  7849  pitore  7851  recnnre  7852
  Copyright terms: Public domain W3C validator