ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prsrlem1 Unicode version

Theorem prsrlem1 7744
Description: Decomposing signed reals into positive reals. Lemma for addsrpr 7747 and mulsrpr 7748. (Contributed by Jim Kingdon, 30-Dec-2019.)
Assertion
Ref Expression
prsrlem1  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
Distinct variable group:    f, g, h, s, t, u, v, w
Allowed substitution hints:    A( w, v, u, t, f, g, h, s)    B( w, v, u, t, f, g, h, s)

Proof of Theorem prsrlem1
Dummy variables  a  b  c  d  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 enrer 7737 . . . . . 6  |-  ~R  Er  ( P.  X.  P. )
2 erdm 6548 . . . . . 6  |-  (  ~R  Er  ( P.  X.  P. )  ->  dom  ~R  =  ( P.  X.  P. )
)
31, 2ax-mp 5 . . . . 5  |-  dom  ~R  =  ( P.  X.  P. )
4 simprll 537 . . . . . 6  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  A  =  [ <. w ,  v
>. ]  ~R  )
5 simpll 527 . . . . . 6  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  A  e.  ( ( P.  X.  P. ) /.  ~R  )
)
64, 5eqeltrrd 2255 . . . . 5  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. w ,  v >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
7 ecelqsdm 6608 . . . . 5  |-  ( ( dom  ~R  =  ( P.  X.  P. )  /\  [ <. w ,  v
>. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  <. w ,  v
>.  e.  ( P.  X.  P. ) )
83, 6, 7sylancr 414 . . . 4  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. w ,  v >.  e.  ( P.  X.  P. ) )
9 opelxp 4658 . . . 4  |-  ( <.
w ,  v >.  e.  ( P.  X.  P. ) 
<->  ( w  e.  P.  /\  v  e.  P. )
)
108, 9sylib 122 . . 3  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( w  e.  P.  /\  v  e. 
P. ) )
11 simprrl 539 . . . . . 6  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  A  =  [ <. s ,  f
>. ]  ~R  )
1211, 5eqeltrrd 2255 . . . . 5  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. s ,  f >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
13 ecelqsdm 6608 . . . . 5  |-  ( ( dom  ~R  =  ( P.  X.  P. )  /\  [ <. s ,  f
>. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  <. s ,  f
>.  e.  ( P.  X.  P. ) )
143, 12, 13sylancr 414 . . . 4  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. s ,  f >.  e.  ( P.  X.  P. ) )
15 opelxp 4658 . . . 4  |-  ( <.
s ,  f >.  e.  ( P.  X.  P. ) 
<->  ( s  e.  P.  /\  f  e.  P. )
)
1614, 15sylib 122 . . 3  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( s  e.  P.  /\  f  e. 
P. ) )
1710, 16jca 306 . 2  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
w  e.  P.  /\  v  e.  P. )  /\  ( s  e.  P.  /\  f  e.  P. )
) )
18 simprlr 538 . . . . . 6  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  B  =  [ <. u ,  t
>. ]  ~R  )
19 simplr 528 . . . . . 6  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  B  e.  ( ( P.  X.  P. ) /.  ~R  )
)
2018, 19eqeltrrd 2255 . . . . 5  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. u ,  t >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
21 ecelqsdm 6608 . . . . 5  |-  ( ( dom  ~R  =  ( P.  X.  P. )  /\  [ <. u ,  t
>. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  <. u ,  t
>.  e.  ( P.  X.  P. ) )
223, 20, 21sylancr 414 . . . 4  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. u ,  t >.  e.  ( P.  X.  P. ) )
23 opelxp 4658 . . . 4  |-  ( <.
u ,  t >.  e.  ( P.  X.  P. ) 
<->  ( u  e.  P.  /\  t  e.  P. )
)
2422, 23sylib 122 . . 3  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( u  e.  P.  /\  t  e. 
P. ) )
25 simprrr 540 . . . . . 6  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  B  =  [ <. g ,  h >. ]  ~R  )
2625, 19eqeltrrd 2255 . . . . 5  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. g ,  h >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  )
)
27 ecelqsdm 6608 . . . . 5  |-  ( ( dom  ~R  =  ( P.  X.  P. )  /\  [ <. g ,  h >. ]  ~R  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  <. g ,  h >.  e.  ( P.  X.  P. ) )
283, 26, 27sylancr 414 . . . 4  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. g ,  h >.  e.  ( P.  X.  P. ) )
29 opelxp 4658 . . . 4  |-  ( <.
g ,  h >.  e.  ( P.  X.  P. ) 
<->  ( g  e.  P.  /\  h  e.  P. )
)
3028, 29sylib 122 . . 3  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( g  e.  P.  /\  h  e. 
P. ) )
3124, 30jca 306 . 2  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )
324, 11eqtr3d 2212 . . . . 5  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. w ,  v >. ]  ~R  =  [ <. s ,  f
>. ]  ~R  )
331a1i 9 . . . . . 6  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ~R  Er  ( P.  X.  P. ) )
3433, 8erth 6582 . . . . 5  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( <. w ,  v >.  ~R  <. s ,  f >.  <->  [ <. w ,  v >. ]  ~R  =  [ <. s ,  f
>. ]  ~R  ) )
3532, 34mpbird 167 . . . 4  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. w ,  v >.  ~R  <. s ,  f >. )
36 df-enr 7728 . . . . . 6  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. a E. b E. c E. d ( ( x  =  <. a ,  b
>.  /\  y  =  <. c ,  d >. )  /\  ( a  +P.  d
)  =  ( b  +P.  c ) ) ) }
3736ecopoveq 6633 . . . . 5  |-  ( ( ( w  e.  P.  /\  v  e.  P. )  /\  ( s  e.  P.  /\  f  e.  P. )
)  ->  ( <. w ,  v >.  ~R  <. s ,  f >.  <->  ( w  +P.  f )  =  ( v  +P.  s ) ) )
3810, 16, 37syl2anc 411 . . . 4  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( <. w ,  v >.  ~R  <. s ,  f >.  <->  ( w  +P.  f )  =  ( v  +P.  s ) ) )
3935, 38mpbid 147 . . 3  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( w  +P.  f )  =  ( v  +P.  s ) )
4018, 25eqtr3d 2212 . . . . 5  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  [ <. u ,  t >. ]  ~R  =  [ <. g ,  h >. ]  ~R  )
4133, 22erth 6582 . . . . 5  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( <. u ,  t >.  ~R  <. g ,  h >.  <->  [ <. u ,  t >. ]  ~R  =  [ <. g ,  h >. ]  ~R  ) )
4240, 41mpbird 167 . . . 4  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  <. u ,  t >.  ~R  <. g ,  h >. )
4336ecopoveq 6633 . . . . 5  |-  ( ( ( u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
)  ->  ( <. u ,  t >.  ~R  <. g ,  h >.  <->  ( u  +P.  h )  =  ( t  +P.  g ) ) )
4424, 30, 43syl2anc 411 . . . 4  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( <. u ,  t >.  ~R  <. g ,  h >.  <->  ( u  +P.  h )  =  ( t  +P.  g ) ) )
4542, 44mpbid 147 . . 3  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( u  +P.  h )  =  ( t  +P.  g ) )
4639, 45jca 306 . 2  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
w  +P.  f )  =  ( v  +P.  s )  /\  (
u  +P.  h )  =  ( t  +P.  g ) ) )
4717, 31, 46jca31 309 1  |-  ( ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  /\  (
( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t
>. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ]  ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
( ( w  e. 
P.  /\  v  e.  P. )  /\  (
s  e.  P.  /\  f  e.  P. )
)  /\  ( (
u  e.  P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. )
) )  /\  (
( w  +P.  f
)  =  ( v  +P.  s )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   <.cop 3597   class class class wbr 4005    X. cxp 4626   dom cdm 4628  (class class class)co 5878    Er wer 6535   [cec 6536   /.cqs 6537   P.cnp 7293    +P. cpp 7295    ~R cer 7298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-eprel 4291  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-recs 6309  df-irdg 6374  df-1o 6420  df-2o 6421  df-oadd 6424  df-omul 6425  df-er 6538  df-ec 6540  df-qs 6544  df-ni 7306  df-pli 7307  df-mi 7308  df-lti 7309  df-plpq 7346  df-mpq 7347  df-enq 7349  df-nqqs 7350  df-plqqs 7351  df-mqqs 7352  df-1nqqs 7353  df-rq 7354  df-ltnqqs 7355  df-enq0 7426  df-nq0 7427  df-0nq0 7428  df-plq0 7429  df-mq0 7430  df-inp 7468  df-iplp 7470  df-enr 7728
This theorem is referenced by:  addsrmo  7745  mulsrmo  7746
  Copyright terms: Public domain W3C validator