| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prsrlem1 | Unicode version | ||
| Description: Decomposing signed reals into positive reals. Lemma for addsrpr 7860 and mulsrpr 7861. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| Ref | Expression |
|---|---|
| prsrlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrer 7850 |
. . . . . 6
| |
| 2 | erdm 6632 |
. . . . . 6
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . 5
|
| 4 | simprll 537 |
. . . . . 6
| |
| 5 | simpll 527 |
. . . . . 6
| |
| 6 | 4, 5 | eqeltrrd 2283 |
. . . . 5
|
| 7 | ecelqsdm 6694 |
. . . . 5
| |
| 8 | 3, 6, 7 | sylancr 414 |
. . . 4
|
| 9 | opelxp 4706 |
. . . 4
| |
| 10 | 8, 9 | sylib 122 |
. . 3
|
| 11 | simprrl 539 |
. . . . . 6
| |
| 12 | 11, 5 | eqeltrrd 2283 |
. . . . 5
|
| 13 | ecelqsdm 6694 |
. . . . 5
| |
| 14 | 3, 12, 13 | sylancr 414 |
. . . 4
|
| 15 | opelxp 4706 |
. . . 4
| |
| 16 | 14, 15 | sylib 122 |
. . 3
|
| 17 | 10, 16 | jca 306 |
. 2
|
| 18 | simprlr 538 |
. . . . . 6
| |
| 19 | simplr 528 |
. . . . . 6
| |
| 20 | 18, 19 | eqeltrrd 2283 |
. . . . 5
|
| 21 | ecelqsdm 6694 |
. . . . 5
| |
| 22 | 3, 20, 21 | sylancr 414 |
. . . 4
|
| 23 | opelxp 4706 |
. . . 4
| |
| 24 | 22, 23 | sylib 122 |
. . 3
|
| 25 | simprrr 540 |
. . . . . 6
| |
| 26 | 25, 19 | eqeltrrd 2283 |
. . . . 5
|
| 27 | ecelqsdm 6694 |
. . . . 5
| |
| 28 | 3, 26, 27 | sylancr 414 |
. . . 4
|
| 29 | opelxp 4706 |
. . . 4
| |
| 30 | 28, 29 | sylib 122 |
. . 3
|
| 31 | 24, 30 | jca 306 |
. 2
|
| 32 | 4, 11 | eqtr3d 2240 |
. . . . 5
|
| 33 | 1 | a1i 9 |
. . . . . 6
|
| 34 | 33, 8 | erth 6668 |
. . . . 5
|
| 35 | 32, 34 | mpbird 167 |
. . . 4
|
| 36 | df-enr 7841 |
. . . . . 6
| |
| 37 | 36 | ecopoveq 6719 |
. . . . 5
|
| 38 | 10, 16, 37 | syl2anc 411 |
. . . 4
|
| 39 | 35, 38 | mpbid 147 |
. . 3
|
| 40 | 18, 25 | eqtr3d 2240 |
. . . . 5
|
| 41 | 33, 22 | erth 6668 |
. . . . 5
|
| 42 | 40, 41 | mpbird 167 |
. . . 4
|
| 43 | 36 | ecopoveq 6719 |
. . . . 5
|
| 44 | 24, 30, 43 | syl2anc 411 |
. . . 4
|
| 45 | 42, 44 | mpbid 147 |
. . 3
|
| 46 | 39, 45 | jca 306 |
. 2
|
| 47 | 17, 31, 46 | jca31 309 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-eprel 4337 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-1o 6504 df-2o 6505 df-oadd 6508 df-omul 6509 df-er 6622 df-ec 6624 df-qs 6628 df-ni 7419 df-pli 7420 df-mi 7421 df-lti 7422 df-plpq 7459 df-mpq 7460 df-enq 7462 df-nqqs 7463 df-plqqs 7464 df-mqqs 7465 df-1nqqs 7466 df-rq 7467 df-ltnqqs 7468 df-enq0 7539 df-nq0 7540 df-0nq0 7541 df-plq0 7542 df-mq0 7543 df-inp 7581 df-iplp 7583 df-enr 7841 |
| This theorem is referenced by: addsrmo 7858 mulsrmo 7859 |
| Copyright terms: Public domain | W3C validator |