| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prsrlem1 | Unicode version | ||
| Description: Decomposing signed reals into positive reals. Lemma for addsrpr 7932 and mulsrpr 7933. (Contributed by Jim Kingdon, 30-Dec-2019.) |
| Ref | Expression |
|---|---|
| prsrlem1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrer 7922 |
. . . . . 6
| |
| 2 | erdm 6690 |
. . . . . 6
| |
| 3 | 1, 2 | ax-mp 5 |
. . . . 5
|
| 4 | simprll 537 |
. . . . . 6
| |
| 5 | simpll 527 |
. . . . . 6
| |
| 6 | 4, 5 | eqeltrrd 2307 |
. . . . 5
|
| 7 | ecelqsdm 6752 |
. . . . 5
| |
| 8 | 3, 6, 7 | sylancr 414 |
. . . 4
|
| 9 | opelxp 4749 |
. . . 4
| |
| 10 | 8, 9 | sylib 122 |
. . 3
|
| 11 | simprrl 539 |
. . . . . 6
| |
| 12 | 11, 5 | eqeltrrd 2307 |
. . . . 5
|
| 13 | ecelqsdm 6752 |
. . . . 5
| |
| 14 | 3, 12, 13 | sylancr 414 |
. . . 4
|
| 15 | opelxp 4749 |
. . . 4
| |
| 16 | 14, 15 | sylib 122 |
. . 3
|
| 17 | 10, 16 | jca 306 |
. 2
|
| 18 | simprlr 538 |
. . . . . 6
| |
| 19 | simplr 528 |
. . . . . 6
| |
| 20 | 18, 19 | eqeltrrd 2307 |
. . . . 5
|
| 21 | ecelqsdm 6752 |
. . . . 5
| |
| 22 | 3, 20, 21 | sylancr 414 |
. . . 4
|
| 23 | opelxp 4749 |
. . . 4
| |
| 24 | 22, 23 | sylib 122 |
. . 3
|
| 25 | simprrr 540 |
. . . . . 6
| |
| 26 | 25, 19 | eqeltrrd 2307 |
. . . . 5
|
| 27 | ecelqsdm 6752 |
. . . . 5
| |
| 28 | 3, 26, 27 | sylancr 414 |
. . . 4
|
| 29 | opelxp 4749 |
. . . 4
| |
| 30 | 28, 29 | sylib 122 |
. . 3
|
| 31 | 24, 30 | jca 306 |
. 2
|
| 32 | 4, 11 | eqtr3d 2264 |
. . . . 5
|
| 33 | 1 | a1i 9 |
. . . . . 6
|
| 34 | 33, 8 | erth 6726 |
. . . . 5
|
| 35 | 32, 34 | mpbird 167 |
. . . 4
|
| 36 | df-enr 7913 |
. . . . . 6
| |
| 37 | 36 | ecopoveq 6777 |
. . . . 5
|
| 38 | 10, 16, 37 | syl2anc 411 |
. . . 4
|
| 39 | 35, 38 | mpbid 147 |
. . 3
|
| 40 | 18, 25 | eqtr3d 2264 |
. . . . 5
|
| 41 | 33, 22 | erth 6726 |
. . . . 5
|
| 42 | 40, 41 | mpbird 167 |
. . . 4
|
| 43 | 36 | ecopoveq 6777 |
. . . . 5
|
| 44 | 24, 30, 43 | syl2anc 411 |
. . . 4
|
| 45 | 42, 44 | mpbid 147 |
. . 3
|
| 46 | 39, 45 | jca 306 |
. 2
|
| 47 | 17, 31, 46 | jca31 309 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-eprel 4380 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-1o 6562 df-2o 6563 df-oadd 6566 df-omul 6567 df-er 6680 df-ec 6682 df-qs 6686 df-ni 7491 df-pli 7492 df-mi 7493 df-lti 7494 df-plpq 7531 df-mpq 7532 df-enq 7534 df-nqqs 7535 df-plqqs 7536 df-mqqs 7537 df-1nqqs 7538 df-rq 7539 df-ltnqqs 7540 df-enq0 7611 df-nq0 7612 df-0nq0 7613 df-plq0 7614 df-mq0 7615 df-inp 7653 df-iplp 7655 df-enr 7913 |
| This theorem is referenced by: addsrmo 7930 mulsrmo 7931 |
| Copyright terms: Public domain | W3C validator |