ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enrer Unicode version

Theorem enrer 7751
Description: The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
Assertion
Ref Expression
enrer  |-  ~R  Er  ( P.  X.  P. )

Proof of Theorem enrer
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enr 7742 . 2  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
2 addcomprg 7594 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  =  ( y  +P.  x ) )
3 addclpr 7553 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  y
)  e.  P. )
4 addassprg 7595 . 2  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
( x  +P.  y
)  +P.  z )  =  ( x  +P.  ( y  +P.  z
) ) )
5 addcanprg 7632 . 2  |-  ( ( x  e.  P.  /\  y  e.  P.  /\  z  e.  P. )  ->  (
( x  +P.  y
)  =  ( x  +P.  z )  -> 
y  =  z ) )
61, 2, 3, 4, 5ecopoverg 6653 1  |-  ~R  Er  ( P.  X.  P. )
Colors of variables: wff set class
Syntax hints:    X. cxp 4638    Er wer 6549   P.cnp 7307    +P. cpp 7309    ~R cer 7312
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2161  ax-14 2162  ax-ext 2170  ax-coll 4132  ax-sep 4135  ax-nul 4143  ax-pow 4188  ax-pr 4223  ax-un 4447  ax-setind 4550  ax-iinf 4601
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2040  df-mo 2041  df-clab 2175  df-cleq 2181  df-clel 2184  df-nfc 2320  df-ne 2360  df-ral 2472  df-rex 2473  df-reu 2474  df-rab 2476  df-v 2753  df-sbc 2977  df-csb 3072  df-dif 3145  df-un 3147  df-in 3149  df-ss 3156  df-nul 3437  df-pw 3591  df-sn 3612  df-pr 3613  df-op 3615  df-uni 3824  df-int 3859  df-iun 3902  df-br 4018  df-opab 4079  df-mpt 4080  df-tr 4116  df-eprel 4303  df-id 4307  df-po 4310  df-iso 4311  df-iord 4380  df-on 4382  df-suc 4385  df-iom 4604  df-xp 4646  df-rel 4647  df-cnv 4648  df-co 4649  df-dm 4650  df-rn 4651  df-res 4652  df-ima 4653  df-iota 5192  df-fun 5232  df-fn 5233  df-f 5234  df-f1 5235  df-fo 5236  df-f1o 5237  df-fv 5238  df-ov 5893  df-oprab 5894  df-mpo 5895  df-1st 6158  df-2nd 6159  df-recs 6323  df-irdg 6388  df-1o 6434  df-2o 6435  df-oadd 6438  df-omul 6439  df-er 6552  df-ec 6554  df-qs 6558  df-ni 7320  df-pli 7321  df-mi 7322  df-lti 7323  df-plpq 7360  df-mpq 7361  df-enq 7363  df-nqqs 7364  df-plqqs 7365  df-mqqs 7366  df-1nqqs 7367  df-rq 7368  df-ltnqqs 7369  df-enq0 7440  df-nq0 7441  df-0nq0 7442  df-plq0 7443  df-mq0 7444  df-inp 7482  df-iplp 7484  df-enr 7742
This theorem is referenced by:  enreceq  7752  prsrlem1  7758  addsrmo  7759  mulsrmo  7760  ltsrprg  7763  gt0srpr  7764  0nsr  7765  axcnex  7875
  Copyright terms: Public domain W3C validator