ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enrbreq Unicode version

Theorem enrbreq 7917
Description: Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.)
Assertion
Ref Expression
enrbreq  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( <. A ,  B >.  ~R  <. C ,  D >.  <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )

Proof of Theorem enrbreq
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-enr 7909 . 2  |-  ~R  =  { <. x ,  y
>.  |  ( (
x  e.  ( P. 
X.  P. )  /\  y  e.  ( P.  X.  P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  =  <. v ,  u >. )  /\  ( z  +P.  u
)  =  ( w  +P.  v ) ) ) }
21ecopoveq 6775 1  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
)  ->  ( <. A ,  B >.  ~R  <. C ,  D >.  <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   <.cop 3669   class class class wbr 4082  (class class class)co 6000   P.cnp 7474    +P. cpp 7476    ~R cer 7479
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-iota 5277  df-fv 5325  df-ov 6003  df-enr 7909
This theorem is referenced by:  enreceq  7919  addcmpblnr  7922  mulcmpblnr  7924
  Copyright terms: Public domain W3C validator