HomeHome Intuitionistic Logic Explorer
Theorem List (p. 78 of 156)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7701-7800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaptipr 7701 Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\ 
 -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  =  B )
 
Theoremltmprr 7702 Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( C  .P.  A )  <P  ( C  .P.  B )  ->  A  <P  B ) )
 
Theoremarchpr 7703* For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer  x is embedded into the reals as described at nnprlu 7613. (Contributed by Jim Kingdon, 22-Apr-2020.)
 |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ] 
 ~Q  <Q  u } >. )
 
Theoremcaucvgprlemcanl 7704* Lemma for cauappcvgprlemladdrl 7717. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
 |-  ( ph  ->  L  e.  P. )   &    |-  ( ph  ->  S  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   &    |-  ( ph  ->  Q  e.  Q. )   =>    |-  ( ph  ->  (
 ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q ) 
 <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) ) )
 
Theoremcauappcvgprlemm 7705* Lemma for cauappcvgpr 7722. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemopl 7706* Lemma for cauappcvgpr 7722. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
 
Theoremcauappcvgprlemlol 7707* Lemma for cauappcvgpr 7722. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcauappcvgprlemopu 7708* Lemma for cauappcvgpr 7722. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemupu 7709* Lemma for cauappcvgpr 7722. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
 
Theoremcauappcvgprlemrnd 7710* Lemma for cauappcvgpr 7722. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  (
 A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcauappcvgprlemdisj 7711* Lemma for cauappcvgpr 7722. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemloc 7712* Lemma for cauappcvgpr 7722. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
 s  <Q  r  ->  (
 s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
 
Theoremcauappcvgprlemcl 7713* Lemma for cauappcvgpr 7722. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcauappcvgprlemladdfu 7714* Lemma for cauappcvgprlemladd 7718. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. ) )
 
Theoremcauappcvgprlemladdfl 7715* Lemma for cauappcvgprlemladd 7718. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. ) )
 
Theoremcauappcvgprlemladdru 7716* Lemma for cauappcvgprlemladd 7718. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  <. { l  e. 
 Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )  C_  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcauappcvgprlemladdrl 7717* Lemma for cauappcvgprlemladd 7718. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 1st `  <. { l  e. 
 Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcauappcvgprlemladd 7718* Lemma for cauappcvgpr 7722. This takes  L and offsets it by the positive fraction  S. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  = 
 <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( ( F `
  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )
 
Theoremcauappcvgprlem1 7719* Lemma for cauappcvgpr 7722. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( F `
  Q ) } ,  { u  |  ( F `  Q ) 
 <Q  u } >.  <P  ( L 
 +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
 
Theoremcauappcvgprlem2 7720* Lemma for cauappcvgpr 7722. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   =>    |-  ( ph  ->  L  <P 
 <. { l  |  l 
 <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) 
 <Q  u } >. )
 
Theoremcauappcvgprlemlim 7721* Lemma for cauappcvgpr 7722. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
 <Q  ( F `  q
 ) } ,  { u  |  ( F `  q )  <Q  u } >. 
 <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  ( q  +Q  r ) 
 <Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  r
 ) ) } ,  { u  |  (
 ( F `  q
 )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
 
Theoremcauappcvgpr 7722* A Cauchy approximation has a limit. A Cauchy approximation, here  F, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of  F is  Q. rather than  P.. We also specify that every term needs to be larger than a fraction  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 7742 and caucvgprpr 7772 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. q  e. 
 Q.  A. r  e.  Q.  ( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( y 
 +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
 q  +Q  r )  <Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  r
 ) ) } ,  { u  |  (
 ( F `  q
 )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
 
Theoremarchrecnq 7723* Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( A  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A )
 
Theoremarchrecpr 7724* Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( A  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A )
 
Theoremcaucvgprlemk 7725 Lemma for caucvgpr 7742. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.)
 |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
 
Theoremcaucvgprlemnkj 7726* Lemma for caucvgpr 7742. Part of disjointness. (Contributed by Jim Kingdon, 23-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  -.  (
 ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 )  <Q  ( F `  K )  /\  ( ( F `  J )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  S ) )
 
Theoremcaucvgprlemnbj 7727* Lemma for caucvgpr 7742. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  B  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   =>    |-  ( ph  ->  -.  (
 ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
 )  +Q  ( *Q ` 
 [ <. J ,  1o >. ]  ~Q  ) )  <Q  ( F `  J ) )
 
Theoremcaucvgprlemm 7728* Lemma for caucvgpr 7742. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprlemopl 7729* Lemma for caucvgpr 7742. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
 
Theoremcaucvgprlemlol 7730* Lemma for caucvgpr 7742. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcaucvgprlemopu 7731* Lemma for caucvgpr 7742. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprlemupu 7732* Lemma for caucvgpr 7742. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
 
Theoremcaucvgprlemrnd 7733* Lemma for caucvgpr 7742. The putative limit is rounded. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  (
 A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcaucvgprlemdisj 7734* Lemma for caucvgpr 7742. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprlemloc 7735* Lemma for caucvgpr 7742. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
 s  <Q  r  ->  (
 s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
 
Theoremcaucvgprlemcl 7736* Lemma for caucvgpr 7742. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprlemladdfu 7737* Lemma for caucvgpr 7742. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  { u  e.  Q.  |  E. j  e.  N.  ( ( ( F `
  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S ) 
 <Q  u } )
 
Theoremcaucvgprlemladdrl 7738* Lemma for caucvgpr 7742. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  ( ( F `  j )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcaucvgprlem1 7739* Lemma for caucvgpr 7742. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )
 
Theoremcaucvgprlem2 7740* Lemma for caucvgpr 7742. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  L 
 <P  <. { l  |  l  <Q  ( ( F `  K )  +Q  Q ) } ,  { u  |  (
 ( F `  K )  +Q  Q )  <Q  u } >. )
 
Theoremcaucvgprlemlim 7741* Lemma for caucvgpr 7742. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  ( j  <N  k 
 ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L 
 +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  ( ( F `  k )  +Q  x ) } ,  { u  |  (
 ( F `  k
 )  +Q  x )  <Q  u } >. ) ) )
 
Theoremcaucvgpr 7742* A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7722 and caucvgprpr 7772. Reading cauappcvgpr 7722 first (the simplest of the three) might help understanding the other two.

(Contributed by Jim Kingdon, 18-Jun-2020.)

 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. x  e. 
 Q.  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  ( <. { l  |  l 
 <Q  ( F `  k
 ) } ,  { u  |  ( F `  k )  <Q  u } >. 
 <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  ( ( F `  k )  +Q  x ) } ,  { u  |  (
 ( F `  k
 )  +Q  x )  <Q  u } >. ) ) )
 
Theoremcaucvgprprlemk 7743* Lemma for caucvgprpr 7772. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.)
 |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q ` 
 [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
 
Theoremcaucvgprprlemloccalc 7744* Lemma for caucvgprpr 7772. Rearranging some expressions for caucvgprprlemloc 7763. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |-  ( ph  ->  S  <Q  T )   &    |-  ( ph  ->  Y  e.  Q. )   &    |-  ( ph  ->  ( S  +Q  Y )  =  T )   &    |-  ( ph  ->  X  e.  Q. )   &    |-  ( ph  ->  ( X  +Q  X ) 
 <Q  Y )   &    |-  ( ph  ->  M  e.  N. )   &    |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )   =>    |-  ( ph  ->  (
 <. { l  |  l 
 <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
 ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  u } >.  +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  <. { l  |  l  <Q  T } ,  { u  |  T  <Q  u } >. )
 
Theoremcaucvgprprlemell 7745* Lemma for caucvgprpr 7772. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
 |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  (
 l  +Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >.  <P  ( F `
  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( X  e.  ( 1st `  L )  <->  ( X  e.  Q. 
 /\  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  b
 ) ) )
 
Theoremcaucvgprprlemelu 7746* Lemma for caucvgprpr 7772. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.)
 |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  (
 l  +Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >.  <P  ( F `
  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( X  e.  ( 2nd `  L )  <->  ( X  e.  Q. 
 /\  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  X } ,  {
 q  |  X  <Q  q } >. ) )
 
Theoremcaucvgprprlemcbv 7747* Lemma for caucvgprpr 7772. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   =>    |-  ( ph  ->  A. a  e.  N.  A. b  e. 
 N.  ( a  <N  b 
 ->  ( ( F `  a )  <P  ( ( F `  b ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  b ) 
 <P  ( ( F `  a )  +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )
 
Theoremcaucvgprprlemval 7748* Lemma for caucvgprpr 7772. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   =>    |-  ( ( ph  /\  A  <N  B )  ->  (
 ( F `  A )  <P  ( ( F `
  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 /\  ( F `  B )  <P  ( ( F `  A ) 
 +P.  <. { p  |  p  <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
 
Theoremcaucvgprprlemnkltj 7749* Lemma for caucvgprpr 7772. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ( ph  /\  K  <N  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnkeqj 7750* Lemma for caucvgprpr 7772. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ( ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnjltk 7751* Lemma for caucvgprpr 7772. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ( ph  /\  J  <N  K )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnkj 7752* Lemma for caucvgprpr 7772. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnbj 7753* Lemma for caucvgprpr 7772. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  B  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   =>    |-  ( ph  ->  -.  (
 ( ( F `  B )  +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 <P  ( F `  J ) )
 
Theoremcaucvgprprlemml 7754* Lemma for caucvgprpr 7772. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
 
Theoremcaucvgprprlemmu 7755* Lemma for caucvgprpr 7772. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
 
Theoremcaucvgprprlemm 7756* Lemma for caucvgprpr 7772. The putative limit is inhabited. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. t  e.  Q.  t  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemopl 7757* Lemma for caucvgprpr 7772. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. t  e.  Q.  ( s  <Q  t 
 /\  t  e.  ( 1st `  L ) ) )
 
Theoremcaucvgprprlemlol 7758* Lemma for caucvgprpr 7772. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcaucvgprprlemopu 7759* Lemma for caucvgprpr 7772. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  t 
 /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemupu 7760* Lemma for caucvgprpr 7772. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  <Q  t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) )
 
Theoremcaucvgprprlemrnd 7761* Lemma for caucvgprpr 7772. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  ( A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) 
 /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcaucvgprprlemdisj 7762* Lemma for caucvgprpr 7772. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemloc 7763* Lemma for caucvgprpr 7772. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. t  e. 
 Q.  ( s  <Q  t 
 ->  ( s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L ) ) ) )
 
Theoremcaucvgprprlemcl 7764* Lemma for caucvgprpr 7772. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprprlemclphr 7765* Lemma for caucvgprpr 7772. The putative limit is a positive real. Like caucvgprprlemcl 7764 but without a disjoint variable condition between  ph and  r. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprprlemexbt 7766* Lemma for caucvgprpr 7772. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  T  e.  P. )   &    |-  ( ph  ->  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
 q  |  Q  <Q  q } >. )  <P  T )   =>    |-  ( ph  ->  E. b  e.  N.  ( ( ( F `  b ) 
 +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T )
 
Theoremcaucvgprprlemexb 7767* Lemma for caucvgprpr 7772. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  R  e.  N. )   =>    |-  ( ph  ->  ( ( ( L  +P.  Q )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  R )  +P.  Q )  ->  E. b  e.  N.  ( ( ( F `
  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  ( Q  +P.  <. { p  |  p  <Q  ( *Q `  [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. ) )  <P  ( ( F `  R )  +P.  Q ) ) )
 
Theoremcaucvgprprlemaddq 7768* Lemma for caucvgprpr 7772. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  X  e.  P. )   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  E. r  e.  N.  ( X  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  r
 )  +P.  Q )
 )   =>    |-  ( ph  ->  X  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem1 7769* Lemma for caucvgprpr 7772. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  ( F `  K )  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem2 7770* Lemma for caucvgprpr 7772. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  L  <P  ( ( F `  K )  +P.  Q ) )
 
Theoremcaucvgprprlemlim 7771* Lemma for caucvgprpr 7772. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. x  e.  P.  E. j  e. 
 N.  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L 
 +P.  x )  /\  L  <P  ( ( F `
  k )  +P.  x ) ) ) )
 
Theoremcaucvgprpr 7772* A Cauchy sequence of positive reals with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a given value  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This is similar to caucvgpr 7742 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7722) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.)

 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. x  e. 
 P.  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <P  ( y  +P.  x )  /\  y  <P  ( ( F `  k
 )  +P.  x )
 ) ) )
 
Theoremsuplocexprlemell 7773* Lemma for suplocexpr 7785. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
 
Theoremsuplocexprlem2b 7774 Lemma for suplocexpr 7785. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( A  C_  P.  ->  ( 2nd `  B )  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
 )
 
Theoremsuplocexprlemss 7775* Lemma for suplocexpr 7785. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A  C_  P. )
 
Theoremsuplocexprlemml 7776* Lemma for suplocexpr 7785. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
 
Theoremsuplocexprlemrl 7777* Lemma for suplocexpr 7785. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A. q  e. 
 Q.  ( q  e. 
 U. ( 1st " A ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
 
Theoremsuplocexprlemmu 7778* Lemma for suplocexpr 7785. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
 
Theoremsuplocexprlemru 7779* Lemma for suplocexpr 7785. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. r  e. 
 Q.  ( r  e.  ( 2nd `  B ) 
 <-> 
 E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
 
Theoremsuplocexprlemdisj 7780* Lemma for suplocexpr 7785. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
 
Theoremsuplocexprlemloc 7781* Lemma for suplocexpr 7785. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
 
Theoremsuplocexprlemex 7782* Lemma for suplocexpr 7785. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  B  e.  P. )
 
Theoremsuplocexprlemub 7783* Lemma for suplocexpr 7785. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
 
Theoremsuplocexprlemlub 7784* Lemma for suplocexpr 7785. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
 
Theoremsuplocexpr 7785* An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y 
 /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
 
Definitiondf-enr 7786* Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
 |- 
 ~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X. 
 P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  +P.  u )  =  ( w 
 +P.  v ) ) ) }
 
Definitiondf-nr 7787 Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
 |- 
 R.  =  ( ( P.  X.  P. ) /.  ~R  )
 
Definitiondf-plr 7788* Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
 |- 
 +R  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [ <. ( w 
 +P.  u ) ,  ( v  +P.  f
 ) >. ]  ~R  )
 ) }
 
Definitiondf-mr 7789* Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
 |- 
 .R  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u ) 
 +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  ( v 
 .P.  u ) )
 >. ]  ~R  ) ) }
 
Definitiondf-ltr 7790* Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.)
 |- 
 <R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ] 
 ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u ) 
 <P  ( w  +P.  v
 ) ) ) }
 
Definitiondf-0r 7791 Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
 |- 
 0R  =  [ <. 1P ,  1P >. ]  ~R
 
Definitiondf-1r 7792 Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
 |- 
 1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
 
Definitiondf-m1r 7793 Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.)
 |- 
 -1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
 
Theoremenrbreq 7794 Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( <. A ,  B >.  ~R  <. C ,  D >.  <-> 
 ( A  +P.  D )  =  ( B  +P.  C ) ) )
 
Theoremenrer 7795 The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |- 
 ~R  Er  ( P.  X. 
 P. )
 
Theoremenreceq 7796 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. C ,  D >. ] 
 ~R 
 <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )
 
Theoremenrex 7797 The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.)
 |- 
 ~R  e.  _V
 
Theoremltrelsr 7798 Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
 |- 
 <R  C_  ( R.  X.  R. )
 
Theoremaddcmpblnr 7799 Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G ) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S ) >. ) )
 
Theoremmulcmpblnrlemg 7800 Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
 ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D 
 .P.  F )  +P.  (
 ( ( A  .P.  G )  +P.  ( B 
 .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D 
 .P.  S ) ) ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15574
  Copyright terms: Public domain < Previous  Next >