HomeHome Intuitionistic Logic Explorer
Theorem List (p. 78 of 142)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7701-7800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddcmpblnr 7701 Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G ) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S ) >. ) )
 
Theoremmulcmpblnrlemg 7702 Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
 ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D 
 .P.  F )  +P.  (
 ( ( A  .P.  G )  +P.  ( B 
 .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D 
 .P.  S ) ) ) ) ) )
 
Theoremmulcmpblnr 7703 Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  <. ( ( A  .P.  F )  +P.  ( B 
 .P.  G ) ) ,  ( ( A  .P.  G )  +P.  ( B 
 .P.  F ) ) >.  ~R 
 <. ( ( C  .P.  R )  +P.  ( D 
 .P.  S ) ) ,  ( ( C  .P.  S )  +P.  ( D 
 .P.  R ) ) >. ) )
 
Theoremprsrlem1 7704* Decomposing signed reals into positive reals. Lemma for addsrpr 7707 and mulsrpr 7708. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( ( A  e.  ( ( P. 
 X.  P. ) /.  ~R  )  /\  B  e.  (
 ( P.  X.  P. ) /.  ~R  ) ) 
 /\  ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ] 
 ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
 ( ( w  e. 
 P.  /\  v  e.  P. )  /\  ( s  e.  P.  /\  f  e.  P. ) )  /\  ( ( u  e. 
 P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. ) ) ) 
 /\  ( ( w 
 +P.  f )  =  ( v  +P.  s
 )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
 
Theoremaddsrmo 7705* There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  E* z E. w E. v E. u E. t
 ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w 
 +P.  u ) ,  ( v  +P.  t
 ) >. ]  ~R  )
 )
 
Theoremmulsrmo 7706* There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  E* z E. w E. v E. u E. t
 ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u ) 
 +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  ( v 
 .P.  u ) )
 >. ]  ~R  ) )
 
Theoremaddsrpr 7707 Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ] 
 ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
 
Theoremmulsrpr 7708 Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  .R  [ <. C ,  D >. ] 
 ~R  )  =  [ <. ( ( A  .P.  C )  +P.  ( B 
 .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B 
 .P.  C ) ) >. ] 
 ~R  )
 
Theoremltsrprg 7709 Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) )
 
Theoremgt0srpr 7710 Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
 |-  ( 0R  <R  [ <. A ,  B >. ]  ~R  <->  B  <P  A )
 
Theorem0nsr 7711 The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.)
 |- 
 -.  (/)  e.  R.
 
Theorem0r 7712 The constant  0R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 0R  e.  R.
 
Theorem1sr 7713 The constant  1R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 1R  e.  R.
 
Theoremm1r 7714 The constant  -1R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 -1R  e.  R.
 
Theoremaddclsr 7715 Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  +R  B )  e.  R. )
 
Theoremmulclsr 7716 Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  .R  B )  e.  R. )
 
Theoremaddcomsrg 7717 Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  +R  B )  =  ( B  +R  A ) )
 
Theoremaddasssrg 7718 Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  +R  B )  +R  C )  =  ( A  +R  ( B  +R  C ) ) )
 
Theoremmulcomsrg 7719 Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  .R  B )  =  ( B  .R  A ) )
 
Theoremmulasssrg 7720 Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  .R  B )  .R  C )  =  ( A  .R  ( B  .R  C ) ) )
 
Theoremdistrsrg 7721 Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A 
 .R  B )  +R  ( A  .R  C ) ) )
 
Theoremm1p1sr 7722 Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
 |-  ( -1R  +R  1R )  =  0R
 
Theoremm1m1sr 7723 Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
 |-  ( -1R  .R  -1R )  =  1R
 
Theoremlttrsr 7724* Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |-  ( ( f  e. 
 R.  /\  g  e.  R. 
 /\  h  e.  R. )  ->  ( ( f 
 <R  g  /\  g  <R  h )  ->  f  <R  h ) )
 
Theoremltposr 7725 Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |- 
 <R  Po  R.
 
Theoremltsosr 7726 Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
 |- 
 <R  Or  R.
 
Theorem0lt1sr 7727 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.)
 |- 
 0R  <R  1R
 
Theorem1ne0sr 7728 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.)
 |- 
 -.  1R  =  0R
 
Theorem0idsr 7729 The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
 |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
 
Theorem1idsr 7730 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
 |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
 
Theorem00sr 7731 A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
 |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
 
Theoremltasrg 7732 Ordering property of addition. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  <R  B  <->  ( C  +R  A )  <R  ( C  +R  B ) ) )
 
Theorempn0sr 7733 A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
 |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
 
Theoremnegexsr 7734* Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
 |-  ( A  e.  R.  ->  E. x  e.  R.  ( A  +R  x )  =  0R )
 
Theoremrecexgt0sr 7735* The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
 |-  ( 0R  <R  A  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( A  .R  x )  =  1R ) )
 
Theoremrecexsrlem 7736* The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.)
 |-  ( 0R  <R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R )
 
Theoremaddgt0sr 7737 The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.)
 |-  ( ( 0R  <R  A 
 /\  0R  <R  B ) 
 ->  0R  <R  ( A  +R  B ) )
 
Theoremltadd1sr 7738 Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.)
 |-  ( A  e.  R.  ->  A  <R  ( A  +R  1R ) )
 
Theoremltm1sr 7739 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
 |-  ( A  e.  R.  ->  ( A  +R  -1R )  <R  A )
 
Theoremmulgt0sr 7740 The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
 |-  ( ( 0R  <R  A 
 /\  0R  <R  B ) 
 ->  0R  <R  ( A  .R  B ) )
 
Theoremaptisr 7741 Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\ 
 -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )
 
Theoremmulextsr1lem 7742 Lemma for mulextsr1 7743. (Contributed by Jim Kingdon, 17-Feb-2020.)
 |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  ->  ( ( ( ( X  .P.  U ) 
 +P.  ( Y  .P.  V ) )  +P.  (
 ( Z  .P.  V )  +P.  ( W  .P.  U ) ) )  <P  ( ( ( X  .P.  V )  +P.  ( Y 
 .P.  U ) )  +P.  ( ( Z  .P.  U )  +P.  ( W 
 .P.  V ) ) ) 
 ->  ( ( X  +P.  W )  <P  ( Y  +P.  Z )  \/  ( Z  +P.  Y )  <P  ( W  +P.  X ) ) ) )
 
Theoremmulextsr1 7743 Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  .R  C )  <R  ( B 
 .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )
 
Theoremarchsr 7744* For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  },  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R is the embedding of the positive integer  x into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
 |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. ( <. { l  |  l  <Q  [
 <. x ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
 
Theoremsrpospr 7745* Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( ( A  e.  R. 
 /\  0R  <R  A ) 
 ->  E! x  e.  P.  [
 <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
 
Theoremprsrcl 7746 Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( A  e.  P.  ->  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  e.  R. )
 
Theoremprsrpos 7747 Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( A  e.  P.  ->  0R  <R  [ <. ( A 
 +P.  1P ) ,  1P >. ]  ~R  )
 
Theoremprsradd 7748 Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B ) 
 +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R 
 [ <. ( B  +P.  1P ) ,  1P >. ] 
 ~R  ) )
 
Theoremprsrlt 7749 Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  <R  [ <. ( B 
 +P.  1P ) ,  1P >. ]  ~R  ) )
 
Theoremprsrriota 7750* Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  R. 
 /\  0R  <R  A ) 
 ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
 
Theoremcaucvgsrlemcl 7751* Lemma for caucvgsr 7764. Terms of the sequence from caucvgsrlemgt1 7757 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   =>    |-  ( ( ph  /\  A  e.  N. )  ->  ( iota_
 y  e.  P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ] 
 ~R  )  e.  P. )
 
Theoremcaucvgsrlemasr 7752* Lemma for caucvgsr 7764. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
 |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `
  m ) )   =>    |-  ( ph  ->  A  e.  R. )
 
Theoremcaucvgsrlemfv 7753* Lemma for caucvgsr 7764. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ( ph  /\  A  e.  N. )  ->  [ <. ( ( G `
  A )  +P.  1P ) ,  1P >. ] 
 ~R  =  ( F `
  A ) )
 
Theoremcaucvgsrlemf 7754* Lemma for caucvgsr 7764. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  G : N. --> P. )
 
Theoremcaucvgsrlemcau 7755* Lemma for caucvgsr 7764. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( G `  n )  <P  ( ( G `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( G `  k )  <P  ( ( G `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )
 
Theoremcaucvgsrlembound 7756* Lemma for caucvgsr 7764. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  A. m  e.  N.  1P  <P  ( G `  m ) )
 
Theoremcaucvgsrlemgt1 7757* Lemma for caucvgsr 7764. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. i  e.  N.  (
 j  <N  i  ->  (
 ( F `  i
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i
 )  +R  x )
 ) ) ) )
 
Theoremcaucvgsrlemoffval 7758* Lemma for caucvgsr 7764. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ( ph  /\  J  e.  N. )  ->  ( ( G `  J )  +R  A )  =  ( ( F `
  J )  +R  1R ) )
 
Theoremcaucvgsrlemofff 7759* Lemma for caucvgsr 7764. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  G : N. --> R. )
 
Theoremcaucvgsrlemoffcau 7760* Lemma for caucvgsr 7764. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( G `  n )  <R  ( ( G `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )
 
Theoremcaucvgsrlemoffgt1 7761* Lemma for caucvgsr 7764. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
 
Theoremcaucvgsrlemoffres 7762* Lemma for caucvgsr 7764. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
 N.  ( j  <N  k 
 ->  ( ( F `  k )  <R  ( y  +R  x )  /\  y  <R  ( ( F `
  k )  +R  x ) ) ) ) )
 
Theoremcaucvgsrlembnd 7763* Lemma for caucvgsr 7764. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k
 )  +R  x )
 ) ) ) )
 
Theoremcaucvgsr 7764* A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7674 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7763).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7759).

3. Since a signed real (element of  R.) which is greater than zero can be mapped to a positive real (element of  P.), perform that mapping on each element of the sequence and invoke caucvgprpr 7674 to get a limit (see caucvgsrlemgt1 7757).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7757).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7762). (Contributed by Jim Kingdon, 20-Jun-2021.)

 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k
 )  +R  x )
 ) ) ) )
 
Theoremltpsrprg 7765 Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  R. )  ->  ( ( C  +R  [
 <. A ,  1P >. ] 
 ~R  )  <R  ( C  +R  [ <. B ,  1P >. ]  ~R  )  <->  A 
 <P  B ) )
 
Theoremmappsrprg 7766 Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) )
 
Theoremmap2psrprg 7767* Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( C  e.  R.  ->  ( ( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
 )
 
Theoremsuplocsrlemb 7768* Lemma for suplocsr 7771. The set  B is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  A. u  e. 
 P.  A. v  e.  P.  ( u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
 
Theoremsuplocsrlempr 7769* Lemma for suplocsr 7771. The set  B has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w 
 /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
 
Theoremsuplocsrlem 7770* Lemma for suplocsr 7771. The set  A has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
Theoremsuplocsr 7771* An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
Syntaxcc 7772 Class of complex numbers.
 class  CC
 
Syntaxcr 7773 Class of real numbers.
 class  RR
 
Syntaxcc0 7774 Extend class notation to include the complex number 0.
 class 
 0
 
Syntaxc1 7775 Extend class notation to include the complex number 1.
 class 
 1
 
Syntaxci 7776 Extend class notation to include the complex number i.
 class  _i
 
Syntaxcaddc 7777 Addition on complex numbers.
 class  +
 
Syntaxcltrr 7778 'Less than' predicate (defined over real subset of complex numbers).
 class  <RR
 
Syntaxcmul 7779 Multiplication on complex numbers. The token  x. is a center dot.
 class  x.
 
Definitiondf-c 7780 Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 CC  =  ( R. 
 X.  R. )
 
Definitiondf-0 7781 Define the complex number 0. (Contributed by NM, 22-Feb-1996.)
 |-  0  =  <. 0R ,  0R >.
 
Definitiondf-1 7782 Define the complex number 1. (Contributed by NM, 22-Feb-1996.)
 |-  1  =  <. 1R ,  0R >.
 
Definitiondf-i 7783 Define the complex number  _i (the imaginary unit). (Contributed by NM, 22-Feb-1996.)
 |-  _i  =  <. 0R ,  1R >.
 
Definitiondf-r 7784 Define the set of real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 RR  =  ( R. 
 X.  { 0R } )
 
Definitiondf-add 7785* Define addition over complex numbers. (Contributed by NM, 28-May-1995.)
 |- 
 +  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( w  +R  u ) ,  ( v  +R  f ) >. ) ) }
 
Definitiondf-mul 7786* Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.)
 |- 
 x.  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v 
 .R  u )  +R  ( w  .R  f ) ) >. ) ) }
 
Definitiondf-lt 7787* Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  = 
 <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
 
Theoremopelcn 7788 Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.)
 |-  ( <. A ,  B >.  e.  CC  <->  ( A  e.  R. 
 /\  B  e.  R. ) )
 
Theoremopelreal 7789 Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
 
Theoremelreal 7790* Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.)
 |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
 
Theoremelrealeu 7791* The real number mapping in elreal 7790 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
 |-  ( A  e.  RR  <->  E! x  e.  R.  <. x ,  0R >.  =  A )
 
Theoremelreal2 7792 Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.)
 |-  ( A  e.  RR  <->  (
 ( 1st `  A )  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. ) )
 
Theorem0ncn 7793 The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7794 which is a related property. (Contributed by NM, 2-May-1996.)
 |- 
 -.  (/)  e.  CC
 
Theoremcnm 7794* A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  x  e.  A )
 
Theoremltrelre 7795 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  C_  ( RR  X.  RR )
 
Theoremaddcnsr 7796 Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D ) >. )
 
Theoremmulcnsr 7797 Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  (
 ( B  .R  C )  +R  ( A  .R  D ) ) >. )
 
Theoremeqresr 7798 Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  A  e.  _V   =>    |-  ( <. A ,  0R >.  =  <. B ,  0R >. 
 <->  A  =  B )
 
Theoremaddresr 7799 Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  0R >. )
 
Theoremmulresr 7800 Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >