HomeHome Intuitionistic Logic Explorer
Theorem List (p. 78 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7701-7800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremmulnqprl 7701 Lemma to prove downward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 1st `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( X  <Q  ( G  .Q  H ) 
 ->  X  e.  ( 1st `  ( A  .P.  B ) ) ) )
 
Theoremmulnqpru 7702 Lemma to prove upward closure in positive real multiplication. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ( ( ( A  e.  P.  /\  G  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  H  e.  ( 2nd `  B ) ) ) 
 /\  X  e.  Q. )  ->  ( ( G  .Q  H )  <Q  X 
 ->  X  e.  ( 2nd `  ( A  .P.  B ) ) ) )
 
Theoremmullocprlem 7703 Calculations for mullocpr 7704. (Contributed by Jim Kingdon, 10-Dec-2019.)
 |-  ( ph  ->  ( A  e.  P.  /\  B  e.  P. ) )   &    |-  ( ph  ->  ( U  .Q  Q )  <Q  ( E  .Q  ( D  .Q  U ) ) )   &    |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) )  <Q  ( T  .Q  ( D  .Q  U ) ) )   &    |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) )  <Q  ( D  .Q  R ) )   &    |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. ) )   &    |-  ( ph  ->  ( D  e.  Q.  /\  U  e.  Q. )
 )   &    |-  ( ph  ->  ( D  e.  ( 1st `  A )  /\  U  e.  ( 2nd `  A ) ) )   &    |-  ( ph  ->  ( E  e.  Q. 
 /\  T  e.  Q. ) )   =>    |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
 
Theoremmullocpr 7704* Locatedness of multiplication on positive reals. Lemma 12.9 in [BauerTaylor], p. 56 (but where both  A and  B are positive, not just  A). (Contributed by Jim Kingdon, 8-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  ( A  .P.  B ) )  \/  r  e.  ( 2nd `  ( A  .P.  B ) ) ) ) )
 
Theoremmulclpr 7705 Closure of multiplication on positive reals. First statement of Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 13-Mar-1996.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  e.  P. )
 
Theoremmulnqprlemrl 7706* Lemma for mulnqpr 7710. The reverse subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. ) )
 
Theoremmulnqprlemru 7707* Lemma for mulnqpr 7710. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) 
 C_  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. ) )
 
Theoremmulnqprlemfl 7708* Lemma for mulnqpr 7710. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 1st `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. )  C_  ( 1st `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremmulnqprlemfu 7709* Lemma for mulnqpr 7710. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( 2nd `  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B ) 
 <Q  u } >. )  C_  ( 2nd `  ( <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) ) )
 
Theoremmulnqpr 7710* Multiplication of fractions embedded into positive reals. One can either multiply the fractions as fractions, or embed them into positive reals and multiply them as positive reals, and get the same result. (Contributed by Jim Kingdon, 18-Jul-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  <. { l  |  l  <Q  ( A  .Q  B ) } ,  { u  |  ( A  .Q  B )  <Q  u } >.  =  ( <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  .P.  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremaddcomprg 7711 Addition of positive reals is commutative. Proposition 9-3.5(ii) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  +P.  B )  =  ( B 
 +P.  A ) )
 
Theoremaddassprg 7712 Addition of positive reals is associative. Proposition 9-3.5(i) of [Gleason] p. 123. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  +P.  B )  +P.  C )  =  ( A  +P.  ( B  +P.  C ) ) )
 
Theoremmulcomprg 7713 Multiplication of positive reals is commutative. Proposition 9-3.7(ii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  .P.  B )  =  ( B 
 .P.  A ) )
 
Theoremmulassprg 7714 Multiplication of positive reals is associative. Proposition 9-3.7(i) of [Gleason] p. 124. (Contributed by Jim Kingdon, 11-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  .P.  B )  .P.  C )  =  ( A  .P.  ( B  .P.  C ) ) )
 
Theoremdistrlem1prl 7715 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 1st `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
 
Theoremdistrlem1pru 7716 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) )  C_  ( 2nd `  ( ( A  .P.  B )  +P.  ( A  .P.  C ) ) ) )
 
Theoremdistrlem4prl 7717* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 1st `  A )  /\  y  e.  ( 1st `  B ) )  /\  ( f  e.  ( 1st `  A )  /\  z  e.  ( 1st `  C ) ) ) )  ->  (
 ( x  .Q  y
 )  +Q  ( f  .Q  z ) )  e.  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem4pru 7718* Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( ( x  e.  ( 2nd `  A )  /\  y  e.  ( 2nd `  B ) )  /\  ( f  e.  ( 2nd `  A )  /\  z  e.  ( 2nd `  C ) ) ) )  ->  (
 ( x  .Q  y
 )  +Q  ( f  .Q  z ) )  e.  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem5prl 7719 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 1st `  (
 ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  C_  ( 1st `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrlem5pru 7720 Lemma for distributive law for positive reals. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( 2nd `  (
 ( A  .P.  B )  +P.  ( A  .P.  C ) ) )  C_  ( 2nd `  ( A  .P.  ( B  +P.  C ) ) ) )
 
Theoremdistrprg 7721 Multiplication of positive reals is distributive. Proposition 9-3.7(iii) of [Gleason] p. 124. (Contributed by Jim Kingdon, 12-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  .P.  ( B  +P.  C ) )  =  ( ( A 
 .P.  B )  +P.  ( A  .P.  C ) ) )
 
Theoremltprordil 7722 If a positive real is less than a second positive real, its lower cut is a subset of the second's lower cut. (Contributed by Jim Kingdon, 23-Dec-2019.)
 |-  ( A  <P  B  ->  ( 1st `  A )  C_  ( 1st `  B ) )
 
Theorem1idprl 7723 Lemma for 1idpr 7725. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  1P ) )  =  ( 1st `  A ) )
 
Theorem1idpru 7724 Lemma for 1idpr 7725. (Contributed by Jim Kingdon, 13-Dec-2019.)
 |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  1P ) )  =  ( 2nd `  A ) )
 
Theorem1idpr 7725 1 is an identity element for positive real multiplication. Theorem 9-3.7(iv) of [Gleason] p. 124. (Contributed by NM, 2-Apr-1996.)
 |-  ( A  e.  P.  ->  ( A  .P.  1P )  =  A )
 
Theoremltnqpr 7726* We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ( A  e.  Q. 
 /\  B  e.  Q. )  ->  ( A  <Q  B  <->  <. { l  |  l 
 <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. ) )
 
Theoremltnqpri 7727* We can order fractions via  <Q or  <P. (Contributed by Jim Kingdon, 8-Jan-2021.)
 |-  ( A  <Q  B  ->  <. { l  |  l  <Q  A } ,  { u  |  A  <Q  u } >.  <P  <. { l  |  l  <Q  B } ,  { u  |  B  <Q  u } >. )
 
Theoremltpopr 7728 Positive real 'less than' is a partial ordering. Remark ("< is transitive and irreflexive") preceding Proposition 11.2.3 of [HoTT], p. (varies). Lemma for ltsopr 7729. (Contributed by Jim Kingdon, 15-Dec-2019.)
 |- 
 <P  Po  P.
 
Theoremltsopr 7729 Positive real 'less than' is a weak linear order (in the sense of df-iso 4352). Proposition 11.2.3 of [HoTT], p. (varies). (Contributed by Jim Kingdon, 16-Dec-2019.)
 |- 
 <P  Or  P.
 
Theoremltaddpr 7730 The sum of two positive reals is greater than one of them. Proposition 9-3.5(iii) of [Gleason] p. 123. (Contributed by NM, 26-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  A  <P  ( A 
 +P.  B ) )
 
Theoremltexprlemell 7731* Element in lower cut of the constructed difference. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( q  e.  ( 1st `  C )  <->  ( q  e. 
 Q.  /\  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  q
 )  e.  ( 1st `  B ) ) ) )
 
Theoremltexprlemelu 7732* Element in upper cut of the constructed difference. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( r  e.  ( 2nd `  C )  <->  ( r  e. 
 Q.  /\  E. y
 ( y  e.  ( 1st `  A )  /\  ( y  +Q  r
 )  e.  ( 2nd `  B ) ) ) )
 
Theoremltexprlemm 7733* Our constructed difference is inhabited. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( E. q  e.  Q.  q  e.  ( 1st `  C )  /\  E. r  e.  Q.  r  e.  ( 2nd `  C ) ) )
 
Theoremltexprlemopl 7734* The lower cut of our constructed difference is open. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  q  e.  Q.  /\  q  e.  ( 1st `  C ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) )
 
Theoremltexprlemlol 7735* The lower cut of our constructed difference is lower. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  q  e.  Q. )  ->  ( E. r  e.  Q.  ( q  <Q  r 
 /\  r  e.  ( 1st `  C ) ) 
 ->  q  e.  ( 1st `  C ) ) )
 
Theoremltexprlemopu 7736* The upper cut of our constructed difference is open. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  r  e.  Q.  /\  r  e.  ( 2nd `  C ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) )
 
Theoremltexprlemupu 7737* The upper cut of our constructed difference is upper. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 21-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( ( A  <P  B 
 /\  r  e.  Q. )  ->  ( E. q  e.  Q.  ( q  <Q  r 
 /\  q  e.  ( 2nd `  C ) ) 
 ->  r  e.  ( 2nd `  C ) ) )
 
Theoremltexprlemrnd 7738* Our constructed difference is rounded. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  (
 A. q  e.  Q.  ( q  e.  ( 1st `  C )  <->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  C ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  C )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  C ) ) ) ) )
 
Theoremltexprlemdisj 7739* Our constructed difference is disjoint. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  C )  /\  q  e.  ( 2nd `  C ) ) )
 
Theoremltexprlemloc 7740* Our constructed difference is located. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  C )  \/  r  e.  ( 2nd `  C ) ) ) )
 
Theoremltexprlempr 7741* Our constructed difference is a positive real. Lemma for ltexpri 7746. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  C  e.  P. )
 
Theoremltexprlemfl 7742* Lemma for ltexpri 7746. One direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( 1st `  ( A  +P.  C ) )  C_  ( 1st `  B )
 )
 
Theoremltexprlemrl 7743* Lemma for ltexpri 7746. Reverse direction of our result for lower cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( 1st `  B )  C_  ( 1st `  ( A  +P.  C ) ) )
 
Theoremltexprlemfu 7744* Lemma for ltexpri 7746. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( 2nd `  ( A  +P.  C ) )  C_  ( 2nd `  B )
 )
 
Theoremltexprlemru 7745* Lemma for ltexpri 7746. One direction of our result for upper cuts. (Contributed by Jim Kingdon, 17-Dec-2019.)
 |-  C  =  <. { x  e.  Q.  |  E. y
 ( y  e.  ( 2nd `  A )  /\  ( y  +Q  x )  e.  ( 1st `  B ) ) } ,  { x  e.  Q.  |  E. y ( y  e.  ( 1st `  A )  /\  ( y  +Q  x )  e.  ( 2nd `  B ) ) } >.   =>    |-  ( A  <P  B  ->  ( 2nd `  B )  C_  ( 2nd `  ( A  +P.  C ) ) )
 
Theoremltexpri 7746* Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 13-May-1996.) (Revised by Mario Carneiro, 14-Jun-2013.)
 |-  ( A  <P  B  ->  E. x  e.  P.  ( A  +P.  x )  =  B )
 
Theoremaddcanprleml 7747 Lemma for addcanprg 7749. (Contributed by Jim Kingdon, 25-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A 
 +P.  B )  =  ( A  +P.  C ) )  ->  ( 1st `  B )  C_  ( 1st `  C ) )
 
Theoremaddcanprlemu 7748 Lemma for addcanprg 7749. (Contributed by Jim Kingdon, 25-Dec-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P.  /\  C  e.  P. )  /\  ( A 
 +P.  B )  =  ( A  +P.  C ) )  ->  ( 2nd `  B )  C_  ( 2nd `  C ) )
 
Theoremaddcanprg 7749 Addition cancellation law for positive reals. Proposition 9-3.5(vi) of [Gleason] p. 123. (Contributed by Jim Kingdon, 24-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( A  +P.  B )  =  ( A 
 +P.  C )  ->  B  =  C ) )
 
Theoremlteupri 7750* The difference from ltexpri 7746 is unique. (Contributed by Jim Kingdon, 7-Jul-2021.)
 |-  ( A  <P  B  ->  E! x  e.  P.  ( A  +P.  x )  =  B )
 
Theoremltaprlem 7751 Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
 |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A ) 
 <P  ( C  +P.  B ) ) )
 
Theoremltaprg 7752 Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
 
Theoremprplnqu 7753* Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
 |-  ( ph  ->  X  e.  P. )   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )   =>    |-  ( ph  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q )  =  A )
 
Theoremaddextpr 7754 Strong extensionality of addition (ordering version). This is similar to addext 8703 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( ( A  +P.  B )  <P  ( C  +P.  D )  ->  ( A  <P  C  \/  B  <P  D ) ) )
 
Theoremrecexprlemell 7755* Membership in the lower cut of  B. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( C  e.  ( 1st `  B )  <->  E. y ( C 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) )
 
Theoremrecexprlemelu 7756* Membership in the upper cut of  B. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( C  e.  ( 2nd `  B )  <->  E. y ( y 
 <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A ) ) )
 
Theoremrecexprlemm 7757*  B is inhabited. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( E. q  e. 
 Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemopl 7758* The lower cut of  B is open. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  q  e.  Q.  /\  q  e.  ( 1st `  B ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) )
 
Theoremrecexprlemlol 7759* The lower cut of  B is lower. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  q  e.  Q. )  ->  ( E. r  e.  Q.  ( q  <Q  r 
 /\  r  e.  ( 1st `  B ) ) 
 ->  q  e.  ( 1st `  B ) ) )
 
Theoremrecexprlemopu 7760* The upper cut of  B is open. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  r  e.  Q.  /\  r  e.  ( 2nd `  B ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemupu 7761* The upper cut of  B is upper. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  r  e.  Q. )  ->  ( E. q  e.  Q.  ( q  <Q  r 
 /\  q  e.  ( 2nd `  B ) ) 
 ->  r  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemrnd 7762*  B is rounded. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( A. q  e. 
 Q.  ( q  e.  ( 1st `  B ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) ) )
 
Theoremrecexprlemdisj 7763*  B is disjoint. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemloc 7764*  B is located. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) ) )
 
Theoremrecexprlempr 7765*  B is a positive real. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  B  e.  P. )
 
Theoremrecexprlem1ssl 7766* The lower cut of one is a subset of the lower cut of  A  .P.  B. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
 
Theoremrecexprlem1ssu 7767* The upper cut of one is a subset of the upper cut of  A  .P.  B. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
 
Theoremrecexprlemss1l 7768* The lower cut of  A  .P.  B is a subset of the lower cut of one. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) ) 
 C_  ( 1st `  1P ) )
 
Theoremrecexprlemss1u 7769* The upper cut of  A  .P.  B is a subset of the upper cut of one. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) ) 
 C_  ( 2nd `  1P ) )
 
Theoremrecexprlemex 7770*  B is the reciprocal of  A. Lemma for recexpr 7771. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
 
Theoremrecexpr 7771* The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
 |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
 
Theoremaptiprleml 7772 Lemma for aptipr 7774. (Contributed by Jim Kingdon, 28-Jan-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\ 
 -.  B  <P  A ) 
 ->  ( 1st `  A )  C_  ( 1st `  B ) )
 
Theoremaptiprlemu 7773 Lemma for aptipr 7774. (Contributed by Jim Kingdon, 28-Jan-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\ 
 -.  B  <P  A ) 
 ->  ( 2nd `  B )  C_  ( 2nd `  A ) )
 
Theoremaptipr 7774 Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\ 
 -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  =  B )
 
Theoremltmprr 7775 Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( C  .P.  A )  <P  ( C  .P.  B )  ->  A  <P  B ) )
 
Theoremarchpr 7776* For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer  x is embedded into the reals as described at nnprlu 7686. (Contributed by Jim Kingdon, 22-Apr-2020.)
 |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ] 
 ~Q  <Q  u } >. )
 
Theoremcaucvgprlemcanl 7777* Lemma for cauappcvgprlemladdrl 7790. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
 |-  ( ph  ->  L  e.  P. )   &    |-  ( ph  ->  S  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   &    |-  ( ph  ->  Q  e.  Q. )   =>    |-  ( ph  ->  (
 ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q ) 
 <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) ) )
 
Theoremcauappcvgprlemm 7778* Lemma for cauappcvgpr 7795. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemopl 7779* Lemma for cauappcvgpr 7795. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
 
Theoremcauappcvgprlemlol 7780* Lemma for cauappcvgpr 7795. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcauappcvgprlemopu 7781* Lemma for cauappcvgpr 7795. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemupu 7782* Lemma for cauappcvgpr 7795. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
 
Theoremcauappcvgprlemrnd 7783* Lemma for cauappcvgpr 7795. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  (
 A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcauappcvgprlemdisj 7784* Lemma for cauappcvgpr 7795. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemloc 7785* Lemma for cauappcvgpr 7795. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
 s  <Q  r  ->  (
 s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
 
Theoremcauappcvgprlemcl 7786* Lemma for cauappcvgpr 7795. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcauappcvgprlemladdfu 7787* Lemma for cauappcvgprlemladd 7791. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. ) )
 
Theoremcauappcvgprlemladdfl 7788* Lemma for cauappcvgprlemladd 7791. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. ) )
 
Theoremcauappcvgprlemladdru 7789* Lemma for cauappcvgprlemladd 7791. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  <. { l  e. 
 Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )  C_  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcauappcvgprlemladdrl 7790* Lemma for cauappcvgprlemladd 7791. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 1st `  <. { l  e. 
 Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcauappcvgprlemladd 7791* Lemma for cauappcvgpr 7795. This takes  L and offsets it by the positive fraction  S. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  = 
 <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( ( F `
  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )
 
Theoremcauappcvgprlem1 7792* Lemma for cauappcvgpr 7795. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( F `
  Q ) } ,  { u  |  ( F `  Q ) 
 <Q  u } >.  <P  ( L 
 +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
 
Theoremcauappcvgprlem2 7793* Lemma for cauappcvgpr 7795. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   =>    |-  ( ph  ->  L  <P 
 <. { l  |  l 
 <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) 
 <Q  u } >. )
 
Theoremcauappcvgprlemlim 7794* Lemma for cauappcvgpr 7795. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
 <Q  ( F `  q
 ) } ,  { u  |  ( F `  q )  <Q  u } >. 
 <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  ( q  +Q  r ) 
 <Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  r
 ) ) } ,  { u  |  (
 ( F `  q
 )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
 
Theoremcauappcvgpr 7795* A Cauchy approximation has a limit. A Cauchy approximation, here  F, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of  F is  Q. rather than  P.. We also specify that every term needs to be larger than a fraction  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 7815 and caucvgprpr 7845 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. q  e. 
 Q.  A. r  e.  Q.  ( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( y 
 +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
 q  +Q  r )  <Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  r
 ) ) } ,  { u  |  (
 ( F `  q
 )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
 
Theoremarchrecnq 7796* Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( A  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A )
 
Theoremarchrecpr 7797* Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( A  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A )
 
Theoremcaucvgprlemk 7798 Lemma for caucvgpr 7815. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.)
 |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
 
Theoremcaucvgprlemnkj 7799* Lemma for caucvgpr 7815. Part of disjointness. (Contributed by Jim Kingdon, 23-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  -.  (
 ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 )  <Q  ( F `  K )  /\  ( ( F `  J )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  S ) )
 
Theoremcaucvgprlemnbj 7800* Lemma for caucvgpr 7815. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  B  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   =>    |-  ( ph  ->  -.  (
 ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
 )  +Q  ( *Q ` 
 [ <. J ,  1o >. ]  ~Q  ) )  <Q  ( F `  J ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >