Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashinfuni | Unicode version |
Description: The ordinal size of an infinite set is . (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
hashinfuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4577 | . . . . . 6 | |
2 | 1 | snid 3614 | . . . . 5 |
3 | elun2 3295 | . . . . 5 | |
4 | breq1 3992 | . . . . . 6 | |
5 | 4 | elrab3 2887 | . . . . 5 |
6 | 2, 3, 5 | mp2b 8 | . . . 4 |
7 | 6 | biimpri 132 | . . 3 |
8 | elrabi 2883 | . . . . . . 7 | |
9 | elun 3268 | . . . . . . 7 | |
10 | 8, 9 | sylib 121 | . . . . . 6 |
11 | ordom 4591 | . . . . . . . 8 | |
12 | ordelss 4364 | . . . . . . . 8 | |
13 | 11, 12 | mpan 422 | . . . . . . 7 |
14 | elsni 3601 | . . . . . . . 8 | |
15 | eqimss 3201 | . . . . . . . 8 | |
16 | 14, 15 | syl 14 | . . . . . . 7 |
17 | 13, 16 | jaoi 711 | . . . . . 6 |
18 | 10, 17 | syl 14 | . . . . 5 |
19 | 18 | adantl 275 | . . . 4 |
20 | 19 | ralrimiva 2543 | . . 3 |
21 | ssunieq 3829 | . . 3 | |
22 | 7, 20, 21 | syl2anc 409 | . 2 |
23 | 22 | eqcomd 2176 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 703 wceq 1348 wcel 2141 wral 2448 crab 2452 cun 3119 wss 3121 csn 3583 cuni 3796 class class class wbr 3989 word 4347 com 4574 cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-tr 4088 df-iord 4351 df-suc 4356 df-iom 4575 |
This theorem is referenced by: hashinfom 10712 |
Copyright terms: Public domain | W3C validator |