Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashinfuni | Unicode version |
Description: The ordinal size of an infinite set is . (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
hashinfuni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 4570 | . . . . . 6 | |
2 | 1 | snid 3607 | . . . . 5 |
3 | elun2 3290 | . . . . 5 | |
4 | breq1 3985 | . . . . . 6 | |
5 | 4 | elrab3 2883 | . . . . 5 |
6 | 2, 3, 5 | mp2b 8 | . . . 4 |
7 | 6 | biimpri 132 | . . 3 |
8 | elrabi 2879 | . . . . . . 7 | |
9 | elun 3263 | . . . . . . 7 | |
10 | 8, 9 | sylib 121 | . . . . . 6 |
11 | ordom 4584 | . . . . . . . 8 | |
12 | ordelss 4357 | . . . . . . . 8 | |
13 | 11, 12 | mpan 421 | . . . . . . 7 |
14 | elsni 3594 | . . . . . . . 8 | |
15 | eqimss 3196 | . . . . . . . 8 | |
16 | 14, 15 | syl 14 | . . . . . . 7 |
17 | 13, 16 | jaoi 706 | . . . . . 6 |
18 | 10, 17 | syl 14 | . . . . 5 |
19 | 18 | adantl 275 | . . . 4 |
20 | 19 | ralrimiva 2539 | . . 3 |
21 | ssunieq 3822 | . . 3 | |
22 | 7, 20, 21 | syl2anc 409 | . 2 |
23 | 22 | eqcomd 2171 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 wo 698 wceq 1343 wcel 2136 wral 2444 crab 2448 cun 3114 wss 3116 csn 3576 cuni 3789 class class class wbr 3982 word 4340 com 4567 cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-tr 4081 df-iord 4344 df-suc 4349 df-iom 4568 |
This theorem is referenced by: hashinfom 10691 |
Copyright terms: Public domain | W3C validator |