| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashinfuni | Unicode version | ||
| Description: The ordinal size of an
infinite set is |
| Ref | Expression |
|---|---|
| hashinfuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 4640 |
. . . . . 6
| |
| 2 | 1 | snid 3663 |
. . . . 5
|
| 3 | elun2 3340 |
. . . . 5
| |
| 4 | breq1 4046 |
. . . . . 6
| |
| 5 | 4 | elrab3 2929 |
. . . . 5
|
| 6 | 2, 3, 5 | mp2b 8 |
. . . 4
|
| 7 | 6 | biimpri 133 |
. . 3
|
| 8 | elrabi 2925 |
. . . . . . 7
| |
| 9 | elun 3313 |
. . . . . . 7
| |
| 10 | 8, 9 | sylib 122 |
. . . . . 6
|
| 11 | ordom 4654 |
. . . . . . . 8
| |
| 12 | ordelss 4425 |
. . . . . . . 8
| |
| 13 | 11, 12 | mpan 424 |
. . . . . . 7
|
| 14 | elsni 3650 |
. . . . . . . 8
| |
| 15 | eqimss 3246 |
. . . . . . . 8
| |
| 16 | 14, 15 | syl 14 |
. . . . . . 7
|
| 17 | 13, 16 | jaoi 717 |
. . . . . 6
|
| 18 | 10, 17 | syl 14 |
. . . . 5
|
| 19 | 18 | adantl 277 |
. . . 4
|
| 20 | 19 | ralrimiva 2578 |
. . 3
|
| 21 | ssunieq 3882 |
. . 3
| |
| 22 | 7, 20, 21 | syl2anc 411 |
. 2
|
| 23 | 22 | eqcomd 2210 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-tr 4142 df-iord 4412 df-suc 4417 df-iom 4638 |
| This theorem is referenced by: hashinfom 10921 |
| Copyright terms: Public domain | W3C validator |