ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfuni Unicode version

Theorem hashinfuni 10034
Description: The ordinal size of an infinite set is  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfuni  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
Distinct variable group:    y, A

Proof of Theorem hashinfuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 omex 4374 . . . . . 6  |-  om  e.  _V
21snid 3452 . . . . 5  |-  om  e.  { om }
3 elun2 3154 . . . . 5  |-  ( om  e.  { om }  ->  om  e.  ( om  u.  { om }
) )
4 breq1 3817 . . . . . 6  |-  ( y  =  om  ->  (
y  ~<_  A  <->  om  ~<_  A ) )
54elrab3 2762 . . . . 5  |-  ( om  e.  ( om  u.  { om } )  -> 
( om  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A }  <->  om  ~<_  A ) )
62, 3, 5mp2b 8 . . . 4  |-  ( om  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  <->  om  ~<_  A )
76biimpri 131 . . 3  |-  ( om  ~<_  A  ->  om  e.  { y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
8 elrabi 2758 . . . . . . 7  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  z  e.  ( om  u.  { om } ) )
9 elun 3127 . . . . . . 7  |-  ( z  e.  ( om  u.  { om } )  <->  ( z  e.  om  \/  z  e. 
{ om } ) )
108, 9sylib 120 . . . . . 6  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  (
z  e.  om  \/  z  e.  { om } ) )
11 ordom 4387 . . . . . . . 8  |-  Ord  om
12 ordelss 4173 . . . . . . . 8  |-  ( ( Ord  om  /\  z  e.  om )  ->  z  C_ 
om )
1311, 12mpan 415 . . . . . . 7  |-  ( z  e.  om  ->  z  C_ 
om )
14 elsni 3443 . . . . . . . 8  |-  ( z  e.  { om }  ->  z  =  om )
15 eqimss 3064 . . . . . . . 8  |-  ( z  =  om  ->  z  C_ 
om )
1614, 15syl 14 . . . . . . 7  |-  ( z  e.  { om }  ->  z  C_  om )
1713, 16jaoi 669 . . . . . 6  |-  ( ( z  e.  om  \/  z  e.  { om } )  ->  z  C_ 
om )
1810, 17syl 14 . . . . 5  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  z  C_ 
om )
1918adantl 271 . . . 4  |-  ( ( om  ~<_  A  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  -> 
z  C_  om )
2019ralrimiva 2442 . . 3  |-  ( om  ~<_  A  ->  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z  C_  om )
21 ssunieq 3663 . . 3  |-  ( ( om  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  /\  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z 
C_  om )  ->  om  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
227, 20, 21syl2anc 403 . 2  |-  ( om  ~<_  A  ->  om  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
2322eqcomd 2090 1  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 103    \/ wo 662    = wceq 1287    e. wcel 1436   A.wral 2355   {crab 2359    u. cun 2984    C_ wss 2986   {csn 3425   U.cuni 3630   class class class wbr 3814   Ord word 4156   omcom 4371    ~<_ cdom 6389
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3925  ax-nul 3933  ax-pow 3977  ax-pr 4003  ax-un 4227  ax-iinf 4369
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ral 2360  df-rex 2361  df-rab 2364  df-v 2616  df-dif 2988  df-un 2990  df-in 2992  df-ss 2999  df-nul 3273  df-pw 3411  df-sn 3431  df-pr 3432  df-op 3434  df-uni 3631  df-int 3666  df-br 3815  df-tr 3905  df-iord 4160  df-suc 4165  df-iom 4372
This theorem is referenced by:  hashinfom  10035
  Copyright terms: Public domain W3C validator