ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfuni Unicode version

Theorem hashinfuni 10886
Description: The ordinal size of an infinite set is  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfuni  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
Distinct variable group:    y, A

Proof of Theorem hashinfuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 omex 4630 . . . . . 6  |-  om  e.  _V
21snid 3654 . . . . 5  |-  om  e.  { om }
3 elun2 3332 . . . . 5  |-  ( om  e.  { om }  ->  om  e.  ( om  u.  { om }
) )
4 breq1 4037 . . . . . 6  |-  ( y  =  om  ->  (
y  ~<_  A  <->  om  ~<_  A ) )
54elrab3 2921 . . . . 5  |-  ( om  e.  ( om  u.  { om } )  -> 
( om  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A }  <->  om  ~<_  A ) )
62, 3, 5mp2b 8 . . . 4  |-  ( om  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  <->  om  ~<_  A )
76biimpri 133 . . 3  |-  ( om  ~<_  A  ->  om  e.  { y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
8 elrabi 2917 . . . . . . 7  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  z  e.  ( om  u.  { om } ) )
9 elun 3305 . . . . . . 7  |-  ( z  e.  ( om  u.  { om } )  <->  ( z  e.  om  \/  z  e. 
{ om } ) )
108, 9sylib 122 . . . . . 6  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  (
z  e.  om  \/  z  e.  { om } ) )
11 ordom 4644 . . . . . . . 8  |-  Ord  om
12 ordelss 4415 . . . . . . . 8  |-  ( ( Ord  om  /\  z  e.  om )  ->  z  C_ 
om )
1311, 12mpan 424 . . . . . . 7  |-  ( z  e.  om  ->  z  C_ 
om )
14 elsni 3641 . . . . . . . 8  |-  ( z  e.  { om }  ->  z  =  om )
15 eqimss 3238 . . . . . . . 8  |-  ( z  =  om  ->  z  C_ 
om )
1614, 15syl 14 . . . . . . 7  |-  ( z  e.  { om }  ->  z  C_  om )
1713, 16jaoi 717 . . . . . 6  |-  ( ( z  e.  om  \/  z  e.  { om } )  ->  z  C_ 
om )
1810, 17syl 14 . . . . 5  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  z  C_ 
om )
1918adantl 277 . . . 4  |-  ( ( om  ~<_  A  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  -> 
z  C_  om )
2019ralrimiva 2570 . . 3  |-  ( om  ~<_  A  ->  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z  C_  om )
21 ssunieq 3873 . . 3  |-  ( ( om  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  /\  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z 
C_  om )  ->  om  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
227, 20, 21syl2anc 411 . 2  |-  ( om  ~<_  A  ->  om  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
2322eqcomd 2202 1  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2167   A.wral 2475   {crab 2479    u. cun 3155    C_ wss 3157   {csn 3623   U.cuni 3840   class class class wbr 4034   Ord word 4398   omcom 4627    ~<_ cdom 6807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-tr 4133  df-iord 4402  df-suc 4407  df-iom 4628
This theorem is referenced by:  hashinfom  10887
  Copyright terms: Public domain W3C validator