ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfuni Unicode version

Theorem hashinfuni 10848
Description: The ordinal size of an infinite set is  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfuni  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
Distinct variable group:    y, A

Proof of Theorem hashinfuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 omex 4625 . . . . . 6  |-  om  e.  _V
21snid 3649 . . . . 5  |-  om  e.  { om }
3 elun2 3327 . . . . 5  |-  ( om  e.  { om }  ->  om  e.  ( om  u.  { om }
) )
4 breq1 4032 . . . . . 6  |-  ( y  =  om  ->  (
y  ~<_  A  <->  om  ~<_  A ) )
54elrab3 2917 . . . . 5  |-  ( om  e.  ( om  u.  { om } )  -> 
( om  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A }  <->  om  ~<_  A ) )
62, 3, 5mp2b 8 . . . 4  |-  ( om  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  <->  om  ~<_  A )
76biimpri 133 . . 3  |-  ( om  ~<_  A  ->  om  e.  { y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
8 elrabi 2913 . . . . . . 7  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  z  e.  ( om  u.  { om } ) )
9 elun 3300 . . . . . . 7  |-  ( z  e.  ( om  u.  { om } )  <->  ( z  e.  om  \/  z  e. 
{ om } ) )
108, 9sylib 122 . . . . . 6  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  (
z  e.  om  \/  z  e.  { om } ) )
11 ordom 4639 . . . . . . . 8  |-  Ord  om
12 ordelss 4410 . . . . . . . 8  |-  ( ( Ord  om  /\  z  e.  om )  ->  z  C_ 
om )
1311, 12mpan 424 . . . . . . 7  |-  ( z  e.  om  ->  z  C_ 
om )
14 elsni 3636 . . . . . . . 8  |-  ( z  e.  { om }  ->  z  =  om )
15 eqimss 3233 . . . . . . . 8  |-  ( z  =  om  ->  z  C_ 
om )
1614, 15syl 14 . . . . . . 7  |-  ( z  e.  { om }  ->  z  C_  om )
1713, 16jaoi 717 . . . . . 6  |-  ( ( z  e.  om  \/  z  e.  { om } )  ->  z  C_ 
om )
1810, 17syl 14 . . . . 5  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  z  C_ 
om )
1918adantl 277 . . . 4  |-  ( ( om  ~<_  A  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  -> 
z  C_  om )
2019ralrimiva 2567 . . 3  |-  ( om  ~<_  A  ->  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z  C_  om )
21 ssunieq 3868 . . 3  |-  ( ( om  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  /\  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z 
C_  om )  ->  om  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
227, 20, 21syl2anc 411 . 2  |-  ( om  ~<_  A  ->  om  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
2322eqcomd 2199 1  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   A.wral 2472   {crab 2476    u. cun 3151    C_ wss 3153   {csn 3618   U.cuni 3835   class class class wbr 4029   Ord word 4393   omcom 4622    ~<_ cdom 6793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-tr 4128  df-iord 4397  df-suc 4402  df-iom 4623
This theorem is referenced by:  hashinfom  10849
  Copyright terms: Public domain W3C validator