| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashinfom | Unicode version | ||
| Description: The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.) |
| Ref | Expression |
|---|---|
| hashinfom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ihash 10958 |
. . . . 5
| |
| 2 | 1 | fveq1i 5600 |
. . . 4
|
| 3 | funmpt 5328 |
. . . . 5
| |
| 4 | funrel 5307 |
. . . . . . 7
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . 6
|
| 6 | peano1 4660 |
. . . . . . 7
| |
| 7 | reldom 6855 |
. . . . . . . . . 10
| |
| 8 | 7 | brrelex2i 4737 |
. . . . . . . . 9
|
| 9 | hashinfuni 10959 |
. . . . . . . . . 10
| |
| 10 | omex 4659 |
. . . . . . . . . 10
| |
| 11 | 9, 10 | eqeltrdi 2298 |
. . . . . . . . 9
|
| 12 | breq2 4063 |
. . . . . . . . . . . 12
| |
| 13 | 12 | rabbidv 2765 |
. . . . . . . . . . 11
|
| 14 | 13 | unieqd 3875 |
. . . . . . . . . 10
|
| 15 | eqid 2207 |
. . . . . . . . . 10
| |
| 16 | 14, 15 | fvmptg 5678 |
. . . . . . . . 9
|
| 17 | 8, 11, 16 | syl2anc 411 |
. . . . . . . 8
|
| 18 | 17, 9 | eqtrd 2240 |
. . . . . . 7
|
| 19 | 6, 18 | eleqtrrid 2297 |
. . . . . 6
|
| 20 | relelfvdm 5631 |
. . . . . 6
| |
| 21 | 5, 19, 20 | sylancr 414 |
. . . . 5
|
| 22 | fvco 5672 |
. . . . 5
| |
| 23 | 3, 21, 22 | sylancr 414 |
. . . 4
|
| 24 | 2, 23 | eqtrid 2252 |
. . 3
|
| 25 | 18 | fveq2d 5603 |
. . 3
|
| 26 | 24, 25 | eqtrd 2240 |
. 2
|
| 27 | pnfxr 8160 |
. . 3
| |
| 28 | ordom 4673 |
. . . . 5
| |
| 29 | ordirr 4608 |
. . . . 5
| |
| 30 | 28, 29 | ax-mp 5 |
. . . 4
|
| 31 | zex 9416 |
. . . . . . . . . 10
| |
| 32 | 31 | mptex 5833 |
. . . . . . . . 9
|
| 33 | vex 2779 |
. . . . . . . . 9
| |
| 34 | 32, 33 | fvex 5619 |
. . . . . . . 8
|
| 35 | 34 | ax-gen 1473 |
. . . . . . 7
|
| 36 | 0z 9418 |
. . . . . . 7
| |
| 37 | frecfnom 6510 |
. . . . . . 7
| |
| 38 | 35, 36, 37 | mp2an 426 |
. . . . . 6
|
| 39 | fndm 5392 |
. . . . . 6
| |
| 40 | 38, 39 | ax-mp 5 |
. . . . 5
|
| 41 | 40 | eleq2i 2274 |
. . . 4
|
| 42 | 30, 41 | mtbir 673 |
. . 3
|
| 43 | fsnunfv 5808 |
. . 3
| |
| 44 | 10, 27, 42, 43 | mp3an 1350 |
. 2
|
| 45 | 26, 44 | eqtrdi 2256 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 ax-rnegex 8069 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-recs 6414 df-frec 6500 df-dom 6852 df-pnf 8144 df-xr 8146 df-neg 8281 df-z 9408 df-ihash 10958 |
| This theorem is referenced by: filtinf 10973 |
| Copyright terms: Public domain | W3C validator |