ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfom Unicode version

Theorem hashinfom 10726
Description: The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfom  |-  ( om  ~<_  A  ->  ( `  A
)  = +oo )

Proof of Theorem hashinfom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10724 . . . . 5  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
21fveq1i 5508 . . . 4  |-  ( `  A
)  =  ( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )
3 funmpt 5246 . . . . 5  |-  Fun  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
4 funrel 5225 . . . . . . 7  |-  ( Fun  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  Rel  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
53, 4ax-mp 5 . . . . . 6  |-  Rel  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
6 peano1 4587 . . . . . . 7  |-  (/)  e.  om
7 reldom 6735 . . . . . . . . . 10  |-  Rel  ~<_
87brrelex2i 4664 . . . . . . . . 9  |-  ( om  ~<_  A  ->  A  e.  _V )
9 hashinfuni 10725 . . . . . . . . . 10  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
10 omex 4586 . . . . . . . . . 10  |-  om  e.  _V
119, 10eqeltrdi 2266 . . . . . . . . 9  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  _V )
12 breq2 4002 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
y  ~<_  x  <->  y  ~<_  A ) )
1312rabbidv 2724 . . . . . . . . . . 11  |-  ( x  =  A  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1413unieqd 3816 . . . . . . . . . 10  |-  ( x  =  A  ->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
15 eqid 2175 . . . . . . . . . 10  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
1614, 15fvmptg 5584 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  _V )  ->  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
)  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
178, 11, 16syl2anc 411 . . . . . . . 8  |-  ( om  ~<_  A  ->  ( (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1817, 9eqtrd 2208 . . . . . . 7  |-  ( om  ~<_  A  ->  ( (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  om )
196, 18eleqtrrid 2265 . . . . . 6  |-  ( om  ~<_  A  ->  (/)  e.  ( ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )
20 relelfvdm 5539 . . . . . 6  |-  ( ( Rel  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  (/) 
e.  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
) )  ->  A  e.  dom  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
215, 19, 20sylancr 414 . . . . 5  |-  ( om  ~<_  A  ->  A  e.  dom  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
22 fvco 5578 . . . . 5  |-  ( ( Fun  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
233, 21, 22sylancr 414 . . . 4  |-  ( om  ~<_  A  ->  ( (
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
242, 23eqtrid 2220 . . 3  |-  ( om  ~<_  A  ->  ( `  A
)  =  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
2518fveq2d 5511 . . 3  |-  ( om  ~<_  A  ->  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  om ) )
2624, 25eqtrd 2208 . 2  |-  ( om  ~<_  A  ->  ( `  A
)  =  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  om )
)
27 pnfxr 7984 . . 3  |- +oo  e.  RR*
28 ordom 4600 . . . . 5  |-  Ord  om
29 ordirr 4535 . . . . 5  |-  ( Ord 
om  ->  -.  om  e.  om )
3028, 29ax-mp 5 . . . 4  |-  -.  om  e.  om
31 zex 9235 . . . . . . . . . 10  |-  ZZ  e.  _V
3231mptex 5734 . . . . . . . . 9  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
33 vex 2738 . . . . . . . . 9  |-  z  e. 
_V
3432, 33fvex 5527 . . . . . . . 8  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
3534ax-gen 1447 . . . . . . 7  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
36 0z 9237 . . . . . . 7  |-  0  e.  ZZ
37 frecfnom 6392 . . . . . . 7  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  0  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om )
3835, 36, 37mp2an 426 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om
39 fndm 5307 . . . . . 6  |-  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  Fn  om  ->  dom frec
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  =  om )
4038, 39ax-mp 5 . . . . 5  |-  dom frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  =  om
4140eleq2i 2242 . . . 4  |-  ( om  e.  dom frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  <->  om  e.  om )
4230, 41mtbir 671 . . 3  |-  -.  om  e.  dom frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
43 fsnunfv 5709 . . 3  |-  ( ( om  e.  _V  /\ +oo  e.  RR*  /\  -.  om  e.  dom frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) )  ->  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } ) `
 om )  = +oo )
4410, 27, 42, 43mp3an 1337 . 2  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  om )  = +oo
4526, 44eqtrdi 2224 1  |-  ( om  ~<_  A  ->  ( `  A
)  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1351    = wceq 1353    e. wcel 2146   {crab 2457   _Vcvv 2735    u. cun 3125   (/)c0 3420   {csn 3589   <.cop 3592   U.cuni 3805   class class class wbr 3998    |-> cmpt 4059   Ord word 4356   omcom 4583   dom cdm 4620    o. ccom 4624   Rel wrel 4625   Fun wfun 5202    Fn wfn 5203   ` cfv 5208  (class class class)co 5865  freccfrec 6381    ~<_ cdom 6729   0cc0 7786   1c1 7787    + caddc 7789   +oocpnf 7963   RR*cxr 7965   ZZcz 9226  ♯chash 10723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581  ax-cnex 7877  ax-resscn 7878  ax-1re 7880  ax-addrcl 7883  ax-rnegex 7895
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-recs 6296  df-frec 6382  df-dom 6732  df-pnf 7968  df-xr 7970  df-neg 8105  df-z 9227  df-ihash 10724
This theorem is referenced by:  filtinf  10739
  Copyright terms: Public domain W3C validator