ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfom Unicode version

Theorem hashinfom 10556
Description: The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfom  |-  ( om  ~<_  A  ->  ( `  A
)  = +oo )

Proof of Theorem hashinfom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10554 . . . . 5  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
21fveq1i 5430 . . . 4  |-  ( `  A
)  =  ( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )
3 funmpt 5169 . . . . 5  |-  Fun  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
4 funrel 5148 . . . . . . 7  |-  ( Fun  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  Rel  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
53, 4ax-mp 5 . . . . . 6  |-  Rel  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
6 peano1 4516 . . . . . . 7  |-  (/)  e.  om
7 reldom 6647 . . . . . . . . . 10  |-  Rel  ~<_
87brrelex2i 4591 . . . . . . . . 9  |-  ( om  ~<_  A  ->  A  e.  _V )
9 hashinfuni 10555 . . . . . . . . . 10  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
10 omex 4515 . . . . . . . . . 10  |-  om  e.  _V
119, 10eqeltrdi 2231 . . . . . . . . 9  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  _V )
12 breq2 3941 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
y  ~<_  x  <->  y  ~<_  A ) )
1312rabbidv 2678 . . . . . . . . . . 11  |-  ( x  =  A  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1413unieqd 3755 . . . . . . . . . 10  |-  ( x  =  A  ->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
15 eqid 2140 . . . . . . . . . 10  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
1614, 15fvmptg 5505 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  _V )  ->  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
)  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
178, 11, 16syl2anc 409 . . . . . . . 8  |-  ( om  ~<_  A  ->  ( (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1817, 9eqtrd 2173 . . . . . . 7  |-  ( om  ~<_  A  ->  ( (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  om )
196, 18eleqtrrid 2230 . . . . . 6  |-  ( om  ~<_  A  ->  (/)  e.  ( ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )
20 relelfvdm 5461 . . . . . 6  |-  ( ( Rel  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  (/) 
e.  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
) )  ->  A  e.  dom  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
215, 19, 20sylancr 411 . . . . 5  |-  ( om  ~<_  A  ->  A  e.  dom  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
22 fvco 5499 . . . . 5  |-  ( ( Fun  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
233, 21, 22sylancr 411 . . . 4  |-  ( om  ~<_  A  ->  ( (
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
242, 23syl5eq 2185 . . 3  |-  ( om  ~<_  A  ->  ( `  A
)  =  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
2518fveq2d 5433 . . 3  |-  ( om  ~<_  A  ->  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  om ) )
2624, 25eqtrd 2173 . 2  |-  ( om  ~<_  A  ->  ( `  A
)  =  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  om )
)
27 pnfxr 7842 . . 3  |- +oo  e.  RR*
28 ordom 4528 . . . . 5  |-  Ord  om
29 ordirr 4465 . . . . 5  |-  ( Ord 
om  ->  -.  om  e.  om )
3028, 29ax-mp 5 . . . 4  |-  -.  om  e.  om
31 zex 9087 . . . . . . . . . 10  |-  ZZ  e.  _V
3231mptex 5654 . . . . . . . . 9  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
33 vex 2692 . . . . . . . . 9  |-  z  e. 
_V
3432, 33fvex 5449 . . . . . . . 8  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
3534ax-gen 1426 . . . . . . 7  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
36 0z 9089 . . . . . . 7  |-  0  e.  ZZ
37 frecfnom 6306 . . . . . . 7  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  0  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om )
3835, 36, 37mp2an 423 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om
39 fndm 5230 . . . . . 6  |-  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  Fn  om  ->  dom frec
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  =  om )
4038, 39ax-mp 5 . . . . 5  |-  dom frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  =  om
4140eleq2i 2207 . . . 4  |-  ( om  e.  dom frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  <->  om  e.  om )
4230, 41mtbir 661 . . 3  |-  -.  om  e.  dom frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
43 fsnunfv 5629 . . 3  |-  ( ( om  e.  _V  /\ +oo  e.  RR*  /\  -.  om  e.  dom frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) )  ->  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } ) `
 om )  = +oo )
4410, 27, 42, 43mp3an 1316 . 2  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  om )  = +oo
4526, 44eqtrdi 2189 1  |-  ( om  ~<_  A  ->  ( `  A
)  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1330    = wceq 1332    e. wcel 1481   {crab 2421   _Vcvv 2689    u. cun 3074   (/)c0 3368   {csn 3532   <.cop 3535   U.cuni 3744   class class class wbr 3937    |-> cmpt 3997   Ord word 4292   omcom 4512   dom cdm 4547    o. ccom 4551   Rel wrel 4552   Fun wfun 5125    Fn wfn 5126   ` cfv 5131  (class class class)co 5782  freccfrec 6295    ~<_ cdom 6641   0cc0 7644   1c1 7645    + caddc 7647   +oocpnf 7821   RR*cxr 7823   ZZcz 9078  ♯chash 10553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-iinf 4510  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741  ax-rnegex 7753
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-iom 4513  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-ov 5785  df-recs 6210  df-frec 6296  df-dom 6644  df-pnf 7826  df-xr 7828  df-neg 7960  df-z 9079  df-ihash 10554
This theorem is referenced by:  filtinf  10570
  Copyright terms: Public domain W3C validator