ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfom Unicode version

Theorem hashinfom 10760
Description: The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfom  |-  ( om  ~<_  A  ->  ( `  A
)  = +oo )

Proof of Theorem hashinfom
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10758 . . . . 5  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
21fveq1i 5518 . . . 4  |-  ( `  A
)  =  ( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )
3 funmpt 5256 . . . . 5  |-  Fun  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
4 funrel 5235 . . . . . . 7  |-  ( Fun  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  Rel  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
53, 4ax-mp 5 . . . . . 6  |-  Rel  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
6 peano1 4595 . . . . . . 7  |-  (/)  e.  om
7 reldom 6747 . . . . . . . . . 10  |-  Rel  ~<_
87brrelex2i 4672 . . . . . . . . 9  |-  ( om  ~<_  A  ->  A  e.  _V )
9 hashinfuni 10759 . . . . . . . . . 10  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
10 omex 4594 . . . . . . . . . 10  |-  om  e.  _V
119, 10eqeltrdi 2268 . . . . . . . . 9  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  _V )
12 breq2 4009 . . . . . . . . . . . 12  |-  ( x  =  A  ->  (
y  ~<_  x  <->  y  ~<_  A ) )
1312rabbidv 2728 . . . . . . . . . . 11  |-  ( x  =  A  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1413unieqd 3822 . . . . . . . . . 10  |-  ( x  =  A  ->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
15 eqid 2177 . . . . . . . . . 10  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
1614, 15fvmptg 5594 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  _V )  ->  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
)  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
178, 11, 16syl2anc 411 . . . . . . . 8  |-  ( om  ~<_  A  ->  ( (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1817, 9eqtrd 2210 . . . . . . 7  |-  ( om  ~<_  A  ->  ( (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  om )
196, 18eleqtrrid 2267 . . . . . 6  |-  ( om  ~<_  A  ->  (/)  e.  ( ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )
20 relelfvdm 5549 . . . . . 6  |-  ( ( Rel  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  (/) 
e.  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
) )  ->  A  e.  dom  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
215, 19, 20sylancr 414 . . . . 5  |-  ( om  ~<_  A  ->  A  e.  dom  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
22 fvco 5588 . . . . 5  |-  ( ( Fun  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
233, 21, 22sylancr 414 . . . 4  |-  ( om  ~<_  A  ->  ( (
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
242, 23eqtrid 2222 . . 3  |-  ( om  ~<_  A  ->  ( `  A
)  =  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
2518fveq2d 5521 . . 3  |-  ( om  ~<_  A  ->  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  om ) )
2624, 25eqtrd 2210 . 2  |-  ( om  ~<_  A  ->  ( `  A
)  =  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  om )
)
27 pnfxr 8012 . . 3  |- +oo  e.  RR*
28 ordom 4608 . . . . 5  |-  Ord  om
29 ordirr 4543 . . . . 5  |-  ( Ord 
om  ->  -.  om  e.  om )
3028, 29ax-mp 5 . . . 4  |-  -.  om  e.  om
31 zex 9264 . . . . . . . . . 10  |-  ZZ  e.  _V
3231mptex 5744 . . . . . . . . 9  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  e.  _V
33 vex 2742 . . . . . . . . 9  |-  z  e. 
_V
3432, 33fvex 5537 . . . . . . . 8  |-  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V
3534ax-gen 1449 . . . . . . 7  |-  A. z
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) `  z )  e.  _V
36 0z 9266 . . . . . . 7  |-  0  e.  ZZ
37 frecfnom 6404 . . . . . . 7  |-  ( ( A. z ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  z )  e.  _V  /\  0  e.  ZZ )  -> frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om )
3835, 36, 37mp2an 426 . . . . . 6  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  Fn  om
39 fndm 5317 . . . . . 6  |-  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  Fn  om  ->  dom frec
( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  =  om )
4038, 39ax-mp 5 . . . . 5  |-  dom frec (
( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  =  om
4140eleq2i 2244 . . . 4  |-  ( om  e.  dom frec ( (
x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  <->  om  e.  om )
4230, 41mtbir 671 . . 3  |-  -.  om  e.  dom frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
43 fsnunfv 5719 . . 3  |-  ( ( om  e.  _V  /\ +oo  e.  RR*  /\  -.  om  e.  dom frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) )  ->  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } ) `
 om )  = +oo )
4410, 27, 42, 43mp3an 1337 . 2  |-  ( (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  om )  = +oo
4526, 44eqtrdi 2226 1  |-  ( om  ~<_  A  ->  ( `  A
)  = +oo )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   A.wal 1351    = wceq 1353    e. wcel 2148   {crab 2459   _Vcvv 2739    u. cun 3129   (/)c0 3424   {csn 3594   <.cop 3597   U.cuni 3811   class class class wbr 4005    |-> cmpt 4066   Ord word 4364   omcom 4591   dom cdm 4628    o. ccom 4632   Rel wrel 4633   Fun wfun 5212    Fn wfn 5213   ` cfv 5218  (class class class)co 5877  freccfrec 6393    ~<_ cdom 6741   0cc0 7813   1c1 7814    + caddc 7816   +oocpnf 7991   RR*cxr 7993   ZZcz 9255  ♯chash 10757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910  ax-rnegex 7922
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5880  df-recs 6308  df-frec 6394  df-dom 6744  df-pnf 7996  df-xr 7998  df-neg 8133  df-z 9256  df-ihash 10758
This theorem is referenced by:  filtinf  10773
  Copyright terms: Public domain W3C validator