Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashinfom | Unicode version |
Description: The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
hashinfom | ♯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ihash 10710 | . . . . 5 ♯ frec | |
2 | 1 | fveq1i 5497 | . . . 4 ♯ frec |
3 | funmpt 5236 | . . . . 5 | |
4 | funrel 5215 | . . . . . . 7 | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 |
6 | peano1 4578 | . . . . . . 7 | |
7 | reldom 6723 | . . . . . . . . . 10 | |
8 | 7 | brrelex2i 4655 | . . . . . . . . 9 |
9 | hashinfuni 10711 | . . . . . . . . . 10 | |
10 | omex 4577 | . . . . . . . . . 10 | |
11 | 9, 10 | eqeltrdi 2261 | . . . . . . . . 9 |
12 | breq2 3993 | . . . . . . . . . . . 12 | |
13 | 12 | rabbidv 2719 | . . . . . . . . . . 11 |
14 | 13 | unieqd 3807 | . . . . . . . . . 10 |
15 | eqid 2170 | . . . . . . . . . 10 | |
16 | 14, 15 | fvmptg 5572 | . . . . . . . . 9 |
17 | 8, 11, 16 | syl2anc 409 | . . . . . . . 8 |
18 | 17, 9 | eqtrd 2203 | . . . . . . 7 |
19 | 6, 18 | eleqtrrid 2260 | . . . . . 6 |
20 | relelfvdm 5528 | . . . . . 6 | |
21 | 5, 19, 20 | sylancr 412 | . . . . 5 |
22 | fvco 5566 | . . . . 5 frec frec | |
23 | 3, 21, 22 | sylancr 412 | . . . 4 frec frec |
24 | 2, 23 | eqtrid 2215 | . . 3 ♯ frec |
25 | 18 | fveq2d 5500 | . . 3 frec frec |
26 | 24, 25 | eqtrd 2203 | . 2 ♯ frec |
27 | pnfxr 7972 | . . 3 | |
28 | ordom 4591 | . . . . 5 | |
29 | ordirr 4526 | . . . . 5 | |
30 | 28, 29 | ax-mp 5 | . . . 4 |
31 | zex 9221 | . . . . . . . . . 10 | |
32 | 31 | mptex 5722 | . . . . . . . . 9 |
33 | vex 2733 | . . . . . . . . 9 | |
34 | 32, 33 | fvex 5516 | . . . . . . . 8 |
35 | 34 | ax-gen 1442 | . . . . . . 7 |
36 | 0z 9223 | . . . . . . 7 | |
37 | frecfnom 6380 | . . . . . . 7 frec | |
38 | 35, 36, 37 | mp2an 424 | . . . . . 6 frec |
39 | fndm 5297 | . . . . . 6 frec frec | |
40 | 38, 39 | ax-mp 5 | . . . . 5 frec |
41 | 40 | eleq2i 2237 | . . . 4 frec |
42 | 30, 41 | mtbir 666 | . . 3 frec |
43 | fsnunfv 5697 | . . 3 frec frec | |
44 | 10, 27, 42, 43 | mp3an 1332 | . 2 frec |
45 | 26, 44 | eqtrdi 2219 | 1 ♯ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1346 wceq 1348 wcel 2141 crab 2452 cvv 2730 cun 3119 c0 3414 csn 3583 cop 3586 cuni 3796 class class class wbr 3989 cmpt 4050 word 4347 com 4574 cdm 4611 ccom 4615 wrel 4616 wfun 5192 wfn 5193 cfv 5198 (class class class)co 5853 freccfrec 6369 cdom 6717 cc0 7774 c1 7775 caddc 7777 cpnf 7951 cxr 7953 cz 9212 ♯chash 10709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-rnegex 7883 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-recs 6284 df-frec 6370 df-dom 6720 df-pnf 7956 df-xr 7958 df-neg 8093 df-z 9213 df-ihash 10710 |
This theorem is referenced by: filtinf 10726 |
Copyright terms: Public domain | W3C validator |