Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashinfom | Unicode version |
Description: The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.) |
Ref | Expression |
---|---|
hashinfom | ♯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ihash 10689 | . . . . 5 ♯ frec | |
2 | 1 | fveq1i 5487 | . . . 4 ♯ frec |
3 | funmpt 5226 | . . . . 5 | |
4 | funrel 5205 | . . . . . . 7 | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 |
6 | peano1 4571 | . . . . . . 7 | |
7 | reldom 6711 | . . . . . . . . . 10 | |
8 | 7 | brrelex2i 4648 | . . . . . . . . 9 |
9 | hashinfuni 10690 | . . . . . . . . . 10 | |
10 | omex 4570 | . . . . . . . . . 10 | |
11 | 9, 10 | eqeltrdi 2257 | . . . . . . . . 9 |
12 | breq2 3986 | . . . . . . . . . . . 12 | |
13 | 12 | rabbidv 2715 | . . . . . . . . . . 11 |
14 | 13 | unieqd 3800 | . . . . . . . . . 10 |
15 | eqid 2165 | . . . . . . . . . 10 | |
16 | 14, 15 | fvmptg 5562 | . . . . . . . . 9 |
17 | 8, 11, 16 | syl2anc 409 | . . . . . . . 8 |
18 | 17, 9 | eqtrd 2198 | . . . . . . 7 |
19 | 6, 18 | eleqtrrid 2256 | . . . . . 6 |
20 | relelfvdm 5518 | . . . . . 6 | |
21 | 5, 19, 20 | sylancr 411 | . . . . 5 |
22 | fvco 5556 | . . . . 5 frec frec | |
23 | 3, 21, 22 | sylancr 411 | . . . 4 frec frec |
24 | 2, 23 | syl5eq 2211 | . . 3 ♯ frec |
25 | 18 | fveq2d 5490 | . . 3 frec frec |
26 | 24, 25 | eqtrd 2198 | . 2 ♯ frec |
27 | pnfxr 7951 | . . 3 | |
28 | ordom 4584 | . . . . 5 | |
29 | ordirr 4519 | . . . . 5 | |
30 | 28, 29 | ax-mp 5 | . . . 4 |
31 | zex 9200 | . . . . . . . . . 10 | |
32 | 31 | mptex 5711 | . . . . . . . . 9 |
33 | vex 2729 | . . . . . . . . 9 | |
34 | 32, 33 | fvex 5506 | . . . . . . . 8 |
35 | 34 | ax-gen 1437 | . . . . . . 7 |
36 | 0z 9202 | . . . . . . 7 | |
37 | frecfnom 6369 | . . . . . . 7 frec | |
38 | 35, 36, 37 | mp2an 423 | . . . . . 6 frec |
39 | fndm 5287 | . . . . . 6 frec frec | |
40 | 38, 39 | ax-mp 5 | . . . . 5 frec |
41 | 40 | eleq2i 2233 | . . . 4 frec |
42 | 30, 41 | mtbir 661 | . . 3 frec |
43 | fsnunfv 5686 | . . 3 frec frec | |
44 | 10, 27, 42, 43 | mp3an 1327 | . 2 frec |
45 | 26, 44 | eqtrdi 2215 | 1 ♯ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wal 1341 wceq 1343 wcel 2136 crab 2448 cvv 2726 cun 3114 c0 3409 csn 3576 cop 3579 cuni 3789 class class class wbr 3982 cmpt 4043 word 4340 com 4567 cdm 4604 ccom 4608 wrel 4609 wfun 5182 wfn 5183 cfv 5188 (class class class)co 5842 freccfrec 6358 cdom 6705 cc0 7753 c1 7754 caddc 7756 cpnf 7930 cxr 7932 cz 9191 ♯chash 10688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 ax-rnegex 7862 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-recs 6273 df-frec 6359 df-dom 6708 df-pnf 7935 df-xr 7937 df-neg 8072 df-z 9192 df-ihash 10689 |
This theorem is referenced by: filtinf 10705 |
Copyright terms: Public domain | W3C validator |