ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap Unicode version

Definition df-ap 8685
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8782 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8708), symmetry (apsym 8709), and cotransitivity (apcotr 8710). Apartness implies negated equality, as seen at apne 8726, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8725).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Distinct variable group:    s, r, t, u, x, y

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 8684 . 2  class #
2 vx . . . . . . . . . . 11  setvar  x
32cv 1372 . . . . . . . . . 10  class  x
4 vr . . . . . . . . . . . 12  setvar  r
54cv 1372 . . . . . . . . . . 11  class  r
6 ci 7957 . . . . . . . . . . . 12  class  _i
7 vs . . . . . . . . . . . . 13  setvar  s
87cv 1372 . . . . . . . . . . . 12  class  s
9 cmul 7960 . . . . . . . . . . . 12  class  x.
106, 8, 9co 5962 . . . . . . . . . . 11  class  ( _i  x.  s )
11 caddc 7958 . . . . . . . . . . 11  class  +
125, 10, 11co 5962 . . . . . . . . . 10  class  ( r  +  ( _i  x.  s ) )
133, 12wceq 1373 . . . . . . . . 9  wff  x  =  ( r  +  ( _i  x.  s ) )
14 vy . . . . . . . . . . 11  setvar  y
1514cv 1372 . . . . . . . . . 10  class  y
16 vt . . . . . . . . . . . 12  setvar  t
1716cv 1372 . . . . . . . . . . 11  class  t
18 vu . . . . . . . . . . . . 13  setvar  u
1918cv 1372 . . . . . . . . . . . 12  class  u
206, 19, 9co 5962 . . . . . . . . . . 11  class  ( _i  x.  u )
2117, 20, 11co 5962 . . . . . . . . . 10  class  ( t  +  ( _i  x.  u ) )
2215, 21wceq 1373 . . . . . . . . 9  wff  y  =  ( t  +  ( _i  x.  u ) )
2313, 22wa 104 . . . . . . . 8  wff  ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )
24 creap 8677 . . . . . . . . . 10  class #
255, 17, 24wbr 4054 . . . . . . . . 9  wff  r #  t
268, 19, 24wbr 4054 . . . . . . . . 9  wff  s #  u
2725, 26wo 710 . . . . . . . 8  wff  ( r #  t  \/  s #  u )
2823, 27wa 104 . . . . . . 7  wff  ( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )
29 cr 7954 . . . . . . 7  class  RR
3028, 18, 29wrex 2486 . . . . . 6  wff  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3130, 16, 29wrex 2486 . . . . 5  wff  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3231, 7, 29wrex 2486 . . . 4  wff  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3332, 4, 29wrex 2486 . . 3  wff  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3433, 2, 14copab 4115 . 2  class  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
351, 34wceq 1373 1  wff #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Colors of variables: wff set class
This definition is referenced by:  apreap  8690  apreim  8706  aprcl  8749  aptap  8753
  Copyright terms: Public domain W3C validator