![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-ap | Unicode version |
Description: Define complex apartness.
Definition 6.1 of [Geuvers], p. 17.
Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8700 which says that a number apart from zero has a reciprocal). The defining characteristics of an apartness are irreflexivity (apirr 8626), symmetry (apsym 8627), and cotransitivity (apcotr 8628). Apartness implies negated equality, as seen at apne 8644, and the converse would also follow if we assumed excluded middle. In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8643). (Contributed by Jim Kingdon, 26-Jan-2020.) |
Ref | Expression |
---|---|
df-ap |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cap 8602 |
. 2
![]() | |
2 | vx |
. . . . . . . . . . 11
![]() ![]() | |
3 | 2 | cv 1363 |
. . . . . . . . . 10
![]() ![]() |
4 | vr |
. . . . . . . . . . . 12
![]() ![]() | |
5 | 4 | cv 1363 |
. . . . . . . . . . 11
![]() ![]() |
6 | ci 7876 |
. . . . . . . . . . . 12
![]() ![]() | |
7 | vs |
. . . . . . . . . . . . 13
![]() ![]() | |
8 | 7 | cv 1363 |
. . . . . . . . . . . 12
![]() ![]() |
9 | cmul 7879 |
. . . . . . . . . . . 12
![]() ![]() | |
10 | 6, 8, 9 | co 5919 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() |
11 | caddc 7877 |
. . . . . . . . . . 11
![]() ![]() | |
12 | 5, 10, 11 | co 5919 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 3, 12 | wceq 1364 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | vy |
. . . . . . . . . . 11
![]() ![]() | |
15 | 14 | cv 1363 |
. . . . . . . . . 10
![]() ![]() |
16 | vt |
. . . . . . . . . . . 12
![]() ![]() | |
17 | 16 | cv 1363 |
. . . . . . . . . . 11
![]() ![]() |
18 | vu |
. . . . . . . . . . . . 13
![]() ![]() | |
19 | 18 | cv 1363 |
. . . . . . . . . . . 12
![]() ![]() |
20 | 6, 19, 9 | co 5919 |
. . . . . . . . . . 11
![]() ![]() ![]() ![]() ![]() ![]() |
21 | 17, 20, 11 | co 5919 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | 15, 21 | wceq 1364 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
23 | 13, 22 | wa 104 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
24 | creap 8595 |
. . . . . . . . . 10
![]() | |
25 | 5, 17, 24 | wbr 4030 |
. . . . . . . . 9
![]() ![]() ![]() |
26 | 8, 19, 24 | wbr 4030 |
. . . . . . . . 9
![]() ![]() ![]() |
27 | 25, 26 | wo 709 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
28 | 23, 27 | wa 104 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
29 | cr 7873 |
. . . . . . 7
![]() ![]() | |
30 | 28, 18, 29 | wrex 2473 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
31 | 30, 16, 29 | wrex 2473 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
32 | 31, 7, 29 | wrex 2473 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 32, 4, 29 | wrex 2473 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 33, 2, 14 | copab 4090 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 1, 34 | wceq 1364 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
This definition is referenced by: apreap 8608 apreim 8624 aprcl 8667 aptap 8671 |
Copyright terms: Public domain | W3C validator |