ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap Unicode version

Definition df-ap 8609
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8706 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8632), symmetry (apsym 8633), and cotransitivity (apcotr 8634). Apartness implies negated equality, as seen at apne 8650, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8649).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Distinct variable group:    s, r, t, u, x, y

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 8608 . 2  class #
2 vx . . . . . . . . . . 11  setvar  x
32cv 1363 . . . . . . . . . 10  class  x
4 vr . . . . . . . . . . . 12  setvar  r
54cv 1363 . . . . . . . . . . 11  class  r
6 ci 7881 . . . . . . . . . . . 12  class  _i
7 vs . . . . . . . . . . . . 13  setvar  s
87cv 1363 . . . . . . . . . . . 12  class  s
9 cmul 7884 . . . . . . . . . . . 12  class  x.
106, 8, 9co 5922 . . . . . . . . . . 11  class  ( _i  x.  s )
11 caddc 7882 . . . . . . . . . . 11  class  +
125, 10, 11co 5922 . . . . . . . . . 10  class  ( r  +  ( _i  x.  s ) )
133, 12wceq 1364 . . . . . . . . 9  wff  x  =  ( r  +  ( _i  x.  s ) )
14 vy . . . . . . . . . . 11  setvar  y
1514cv 1363 . . . . . . . . . 10  class  y
16 vt . . . . . . . . . . . 12  setvar  t
1716cv 1363 . . . . . . . . . . 11  class  t
18 vu . . . . . . . . . . . . 13  setvar  u
1918cv 1363 . . . . . . . . . . . 12  class  u
206, 19, 9co 5922 . . . . . . . . . . 11  class  ( _i  x.  u )
2117, 20, 11co 5922 . . . . . . . . . 10  class  ( t  +  ( _i  x.  u ) )
2215, 21wceq 1364 . . . . . . . . 9  wff  y  =  ( t  +  ( _i  x.  u ) )
2313, 22wa 104 . . . . . . . 8  wff  ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )
24 creap 8601 . . . . . . . . . 10  class #
255, 17, 24wbr 4033 . . . . . . . . 9  wff  r #  t
268, 19, 24wbr 4033 . . . . . . . . 9  wff  s #  u
2725, 26wo 709 . . . . . . . 8  wff  ( r #  t  \/  s #  u )
2823, 27wa 104 . . . . . . 7  wff  ( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )
29 cr 7878 . . . . . . 7  class  RR
3028, 18, 29wrex 2476 . . . . . 6  wff  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3130, 16, 29wrex 2476 . . . . 5  wff  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3231, 7, 29wrex 2476 . . . 4  wff  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3332, 4, 29wrex 2476 . . 3  wff  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3433, 2, 14copab 4093 . 2  class  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
351, 34wceq 1364 1  wff #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Colors of variables: wff set class
This definition is referenced by:  apreap  8614  apreim  8630  aprcl  8673  aptap  8677
  Copyright terms: Public domain W3C validator