ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap Unicode version

Definition df-ap 8655
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8752 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8678), symmetry (apsym 8679), and cotransitivity (apcotr 8680). Apartness implies negated equality, as seen at apne 8696, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8695).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Distinct variable group:    s, r, t, u, x, y

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 8654 . 2  class #
2 vx . . . . . . . . . . 11  setvar  x
32cv 1372 . . . . . . . . . 10  class  x
4 vr . . . . . . . . . . . 12  setvar  r
54cv 1372 . . . . . . . . . . 11  class  r
6 ci 7927 . . . . . . . . . . . 12  class  _i
7 vs . . . . . . . . . . . . 13  setvar  s
87cv 1372 . . . . . . . . . . . 12  class  s
9 cmul 7930 . . . . . . . . . . . 12  class  x.
106, 8, 9co 5944 . . . . . . . . . . 11  class  ( _i  x.  s )
11 caddc 7928 . . . . . . . . . . 11  class  +
125, 10, 11co 5944 . . . . . . . . . 10  class  ( r  +  ( _i  x.  s ) )
133, 12wceq 1373 . . . . . . . . 9  wff  x  =  ( r  +  ( _i  x.  s ) )
14 vy . . . . . . . . . . 11  setvar  y
1514cv 1372 . . . . . . . . . 10  class  y
16 vt . . . . . . . . . . . 12  setvar  t
1716cv 1372 . . . . . . . . . . 11  class  t
18 vu . . . . . . . . . . . . 13  setvar  u
1918cv 1372 . . . . . . . . . . . 12  class  u
206, 19, 9co 5944 . . . . . . . . . . 11  class  ( _i  x.  u )
2117, 20, 11co 5944 . . . . . . . . . 10  class  ( t  +  ( _i  x.  u ) )
2215, 21wceq 1373 . . . . . . . . 9  wff  y  =  ( t  +  ( _i  x.  u ) )
2313, 22wa 104 . . . . . . . 8  wff  ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )
24 creap 8647 . . . . . . . . . 10  class #
255, 17, 24wbr 4044 . . . . . . . . 9  wff  r #  t
268, 19, 24wbr 4044 . . . . . . . . 9  wff  s #  u
2725, 26wo 710 . . . . . . . 8  wff  ( r #  t  \/  s #  u )
2823, 27wa 104 . . . . . . 7  wff  ( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )
29 cr 7924 . . . . . . 7  class  RR
3028, 18, 29wrex 2485 . . . . . 6  wff  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3130, 16, 29wrex 2485 . . . . 5  wff  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3231, 7, 29wrex 2485 . . . 4  wff  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3332, 4, 29wrex 2485 . . 3  wff  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3433, 2, 14copab 4104 . 2  class  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
351, 34wceq 1373 1  wff #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Colors of variables: wff set class
This definition is referenced by:  apreap  8660  apreim  8676  aprcl  8719  aptap  8723
  Copyright terms: Public domain W3C validator