ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap Unicode version

Definition df-ap 8541
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8638 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8564), symmetry (apsym 8565), and cotransitivity (apcotr 8566). Apartness implies negated equality, as seen at apne 8582, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8581).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Distinct variable group:    s, r, t, u, x, y

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 8540 . 2  class #
2 vx . . . . . . . . . . 11  setvar  x
32cv 1352 . . . . . . . . . 10  class  x
4 vr . . . . . . . . . . . 12  setvar  r
54cv 1352 . . . . . . . . . . 11  class  r
6 ci 7815 . . . . . . . . . . . 12  class  _i
7 vs . . . . . . . . . . . . 13  setvar  s
87cv 1352 . . . . . . . . . . . 12  class  s
9 cmul 7818 . . . . . . . . . . . 12  class  x.
106, 8, 9co 5877 . . . . . . . . . . 11  class  ( _i  x.  s )
11 caddc 7816 . . . . . . . . . . 11  class  +
125, 10, 11co 5877 . . . . . . . . . 10  class  ( r  +  ( _i  x.  s ) )
133, 12wceq 1353 . . . . . . . . 9  wff  x  =  ( r  +  ( _i  x.  s ) )
14 vy . . . . . . . . . . 11  setvar  y
1514cv 1352 . . . . . . . . . 10  class  y
16 vt . . . . . . . . . . . 12  setvar  t
1716cv 1352 . . . . . . . . . . 11  class  t
18 vu . . . . . . . . . . . . 13  setvar  u
1918cv 1352 . . . . . . . . . . . 12  class  u
206, 19, 9co 5877 . . . . . . . . . . 11  class  ( _i  x.  u )
2117, 20, 11co 5877 . . . . . . . . . 10  class  ( t  +  ( _i  x.  u ) )
2215, 21wceq 1353 . . . . . . . . 9  wff  y  =  ( t  +  ( _i  x.  u ) )
2313, 22wa 104 . . . . . . . 8  wff  ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )
24 creap 8533 . . . . . . . . . 10  class #
255, 17, 24wbr 4005 . . . . . . . . 9  wff  r #  t
268, 19, 24wbr 4005 . . . . . . . . 9  wff  s #  u
2725, 26wo 708 . . . . . . . 8  wff  ( r #  t  \/  s #  u )
2823, 27wa 104 . . . . . . 7  wff  ( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )
29 cr 7812 . . . . . . 7  class  RR
3028, 18, 29wrex 2456 . . . . . 6  wff  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3130, 16, 29wrex 2456 . . . . 5  wff  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3231, 7, 29wrex 2456 . . . 4  wff  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3332, 4, 29wrex 2456 . . 3  wff  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3433, 2, 14copab 4065 . 2  class  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
351, 34wceq 1353 1  wff #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Colors of variables: wff set class
This definition is referenced by:  apreap  8546  apreim  8562  aprcl  8605  aptap  8609
  Copyright terms: Public domain W3C validator