ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-ap Unicode version

Definition df-ap 8476
Description: Define complex apartness. Definition 6.1 of [Geuvers], p. 17.

Two numbers are considered apart if it is possible to separate them. One common usage is that we can divide by a number if it is apart from zero (see for example recclap 8571 which says that a number apart from zero has a reciprocal).

The defining characteristics of an apartness are irreflexivity (apirr 8499), symmetry (apsym 8500), and cotransitivity (apcotr 8501). Apartness implies negated equality, as seen at apne 8517, and the converse would also follow if we assumed excluded middle.

In addition, apartness of complex numbers is tight, which means that two numbers which are not apart are equal (apti 8516).

(Contributed by Jim Kingdon, 26-Jan-2020.)

Assertion
Ref Expression
df-ap  |- #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Distinct variable group:    s, r, t, u, x, y

Detailed syntax breakdown of Definition df-ap
StepHypRef Expression
1 cap 8475 . 2  class #
2 vx . . . . . . . . . . 11  setvar  x
32cv 1342 . . . . . . . . . 10  class  x
4 vr . . . . . . . . . . . 12  setvar  r
54cv 1342 . . . . . . . . . . 11  class  r
6 ci 7751 . . . . . . . . . . . 12  class  _i
7 vs . . . . . . . . . . . . 13  setvar  s
87cv 1342 . . . . . . . . . . . 12  class  s
9 cmul 7754 . . . . . . . . . . . 12  class  x.
106, 8, 9co 5841 . . . . . . . . . . 11  class  ( _i  x.  s )
11 caddc 7752 . . . . . . . . . . 11  class  +
125, 10, 11co 5841 . . . . . . . . . 10  class  ( r  +  ( _i  x.  s ) )
133, 12wceq 1343 . . . . . . . . 9  wff  x  =  ( r  +  ( _i  x.  s ) )
14 vy . . . . . . . . . . 11  setvar  y
1514cv 1342 . . . . . . . . . 10  class  y
16 vt . . . . . . . . . . . 12  setvar  t
1716cv 1342 . . . . . . . . . . 11  class  t
18 vu . . . . . . . . . . . . 13  setvar  u
1918cv 1342 . . . . . . . . . . . 12  class  u
206, 19, 9co 5841 . . . . . . . . . . 11  class  ( _i  x.  u )
2117, 20, 11co 5841 . . . . . . . . . 10  class  ( t  +  ( _i  x.  u ) )
2215, 21wceq 1343 . . . . . . . . 9  wff  y  =  ( t  +  ( _i  x.  u ) )
2313, 22wa 103 . . . . . . . 8  wff  ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )
24 creap 8468 . . . . . . . . . 10  class #
255, 17, 24wbr 3981 . . . . . . . . 9  wff  r #  t
268, 19, 24wbr 3981 . . . . . . . . 9  wff  s #  u
2725, 26wo 698 . . . . . . . 8  wff  ( r #  t  \/  s #  u )
2823, 27wa 103 . . . . . . 7  wff  ( ( x  =  ( r  +  ( _i  x.  s ) )  /\  y  =  ( t  +  ( _i  x.  u ) ) )  /\  ( r #  t  \/  s #  u ) )
29 cr 7748 . . . . . . 7  class  RR
3028, 18, 29wrex 2444 . . . . . 6  wff  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3130, 16, 29wrex 2444 . . . . 5  wff  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3231, 7, 29wrex 2444 . . . 4  wff  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3332, 4, 29wrex 2444 . . 3  wff  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) )
3433, 2, 14copab 4041 . 2  class  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
351, 34wceq 1343 1  wff #  =  { <. x ,  y >.  |  E. r  e.  RR  E. s  e.  RR  E. t  e.  RR  E. u  e.  RR  ( ( x  =  ( r  +  ( _i  x.  s
) )  /\  y  =  ( t  +  ( _i  x.  u
) ) )  /\  ( r #  t  \/  s #  u
) ) }
Colors of variables: wff set class
This definition is referenced by:  apreap  8481  apreim  8497  aprcl  8540
  Copyright terms: Public domain W3C validator