HomeHome Intuitionistic Logic Explorer
Theorem List (p. 108 of 150)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10701-10800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
4.6.7  Ordered pair theorem for nonnegative integers
 
Theoremnn0le2msqd 10701 The square function on nonnegative integers is monotonic. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  B ) ) )
 
Theoremnn0opthlem1d 10702 A rather pretty lemma for nn0opth2 10706. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   =>    |-  ( ph  ->  ( A  <  C  <->  ( ( A  x.  A )  +  ( 2  x.  A ) )  <  ( C  x.  C ) ) )
 
Theoremnn0opthlem2d 10703 Lemma for nn0opth2 10706. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  NN0 )   =>    |-  ( ph  ->  (
 ( A  +  B )  <  C  ->  (
 ( C  x.  C )  +  D )  =/=  ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B ) ) )
 
Theoremnn0opthd 10704 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. We can represent an ordered pair of nonnegative integers  A and  B by  (
( ( A  +  B )  x.  ( A  +  B )
)  +  B ). If two such ordered pairs are equal, their first elements are equal and their second elements are equal. Contrast this ordered pair representation with the standard one df-op 3603 that works for any set. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  NN0 )   =>    |-  ( ph  ->  (
 ( ( ( A  +  B )  x.  ( A  +  B ) )  +  B )  =  ( (
 ( C  +  D )  x.  ( C  +  D ) )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremnn0opth2d 10705 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthd 10704. (Contributed by Jim Kingdon, 31-Oct-2021.)
 |-  ( ph  ->  A  e.  NN0 )   &    |-  ( ph  ->  B  e.  NN0 )   &    |-  ( ph  ->  C  e.  NN0 )   &    |-  ( ph  ->  D  e.  NN0 )   =>    |-  ( ph  ->  (
 ( ( ( A  +  B ) ^
 2 )  +  B )  =  ( (
 ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
Theoremnn0opth2 10706 An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See nn0opthd 10704. (Contributed by NM, 22-Jul-2004.)
 |-  ( ( ( A  e.  NN0  /\  B  e.  NN0 )  /\  ( C  e.  NN0  /\  D  e.  NN0 ) )  ->  (
 ( ( ( A  +  B ) ^
 2 )  +  B )  =  ( (
 ( C  +  D ) ^ 2 )  +  D )  <->  ( A  =  C  /\  B  =  D ) ) )
 
4.6.8  Factorial function
 
Syntaxcfa 10707 Extend class notation to include the factorial of nonnegative integers.
 class  !
 
Definitiondf-fac 10708 Define the factorial function on nonnegative integers. For example,  ( ! `  5 )  =  1 2 0 because  1  x.  2  x.  3  x.  4  x.  5  =  1 2 0 (ex-fac 14565). In the literature, the factorial function is written as a postscript exclamation point. (Contributed by NM, 2-Dec-2004.)
 |-  !  =  ( { <. 0 ,  1 >. }  u.  seq 1 (  x.  ,  _I  )
 )
 
Theoremfacnn 10709 Value of the factorial function for positive integers. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( N  e.  NN  ->  ( ! `  N )  =  (  seq 1 (  x.  ,  _I  ) `  N ) )
 
Theoremfac0 10710 The factorial of 0. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( ! `  0
 )  =  1
 
Theoremfac1 10711 The factorial of 1. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( ! `  1
 )  =  1
 
Theoremfacp1 10712 The factorial of a successor. (Contributed by NM, 2-Dec-2004.) (Revised by Mario Carneiro, 13-Jul-2013.)
 |-  ( N  e.  NN0  ->  ( ! `  ( N  +  1 ) )  =  ( ( ! `
  N )  x.  ( N  +  1 ) ) )
 
Theoremfac2 10713 The factorial of 2. (Contributed by NM, 17-Mar-2005.)
 |-  ( ! `  2
 )  =  2
 
Theoremfac3 10714 The factorial of 3. (Contributed by NM, 17-Mar-2005.)
 |-  ( ! `  3
 )  =  6
 
Theoremfac4 10715 The factorial of 4. (Contributed by Mario Carneiro, 18-Jun-2015.)
 |-  ( ! `  4
 )  = ; 2 4
 
Theoremfacnn2 10716 Value of the factorial function expressed recursively. (Contributed by NM, 2-Dec-2004.)
 |-  ( N  e.  NN  ->  ( ! `  N )  =  ( ( ! `  ( N  -  1 ) )  x.  N ) )
 
Theoremfaccl 10717 Closure of the factorial function. (Contributed by NM, 2-Dec-2004.)
 |-  ( N  e.  NN0  ->  ( ! `  N )  e.  NN )
 
Theoremfaccld 10718 Closure of the factorial function, deduction version of faccl 10717. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  N  e.  NN0 )   =>    |-  ( ph  ->  ( ! `  N )  e. 
 NN )
 
Theoremfacne0 10719 The factorial function is nonzero. (Contributed by NM, 26-Apr-2005.)
 |-  ( N  e.  NN0  ->  ( ! `  N )  =/=  0 )
 
Theoremfacdiv 10720 A positive integer divides the factorial of an equal or larger number. (Contributed by NM, 2-May-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN  /\  N  <_  M )  ->  ( ( ! `  M )  /  N )  e.  NN )
 
Theoremfacndiv 10721 No positive integer (greater than one) divides the factorial plus one of an equal or larger number. (Contributed by NM, 3-May-2005.)
 |-  ( ( ( M  e.  NN0  /\  N  e.  NN )  /\  ( 1  <  N  /\  N  <_  M ) )  ->  -.  ( ( ( ! `
  M )  +  1 )  /  N )  e.  ZZ )
 
Theoremfacwordi 10722 Ordering property of factorial. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0  /\  M  <_  N )  ->  ( ! `  M )  <_  ( ! `  N ) )
 
Theoremfaclbnd 10723 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M ^ ( N  +  1 )
 )  <_  ( ( M ^ M )  x.  ( ! `  N ) ) )
 
Theoremfaclbnd2 10724 A lower bound for the factorial function. (Contributed by NM, 17-Dec-2005.)
 |-  ( N  e.  NN0  ->  ( ( 2 ^ N )  /  2
 )  <_  ( ! `  N ) )
 
Theoremfaclbnd3 10725 A lower bound for the factorial function. (Contributed by NM, 19-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( M ^ N )  <_  ( ( M ^ M )  x.  ( ! `  N ) ) )
 
Theoremfaclbnd6 10726 Geometric lower bound for the factorial function, where N is usually held constant. (Contributed by Paul Chapman, 28-Dec-2007.)
 |-  ( ( N  e.  NN0  /\  M  e.  NN0 )  ->  ( ( ! `  N )  x.  (
 ( N  +  1 ) ^ M ) )  <_  ( ! `  ( N  +  M ) ) )
 
Theoremfacubnd 10727 An upper bound for the factorial function. (Contributed by Mario Carneiro, 15-Apr-2016.)
 |-  ( N  e.  NN0  ->  ( ! `  N ) 
 <_  ( N ^ N ) )
 
Theoremfacavg 10728 The product of two factorials is greater than or equal to the factorial of (the floor of) their average. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( ! `  ( |_ `  ( ( M  +  N )  / 
 2 ) ) ) 
 <_  ( ( ! `  M )  x.  ( ! `  N ) ) )
 
4.6.9  The binomial coefficient operation
 
Syntaxcbc 10729 Extend class notation to include the binomial coefficient operation (combinatorial choose operation).
 class  _C
 
Definitiondf-bc 10730* Define the binomial coefficient operation. For example,  ( 5  _C  3 )  =  1 0 (ex-bc 14566).

In the literature, this function is often written as a column vector of the two arguments, or with the arguments as subscripts before and after the letter "C".  ( N  _C  K
) is read " N choose  K." Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  k  <_  n does not hold. (Contributed by NM, 10-Jul-2005.)

 |- 
 _C  =  ( n  e.  NN0 ,  k  e. 
 ZZ  |->  if ( k  e.  ( 0 ... n ) ,  ( ( ! `  n )  /  ( ( ! `  ( n  -  k
 ) )  x.  ( ! `  k ) ) ) ,  0 ) )
 
Theorembcval 10731 Value of the binomial coefficient, 
N choose  K. Definition of binomial coefficient in [Gleason] p. 295. As suggested by Gleason, we define it to be 0 when  0  <_  K  <_  N does not hold. See bcval2 10732 for the value in the standard domain. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K )  =  if ( K  e.  ( 0 ... N ) ,  (
 ( ! `  N )  /  ( ( ! `
  ( N  -  K ) )  x.  ( ! `  K ) ) ) ,  0 ) )
 
Theorembcval2 10732 Value of the binomial coefficient, 
N choose  K, in its standard domain. (Contributed by NM, 9-Jun-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( K  e.  (
 0 ... N )  ->  ( N  _C  K )  =  ( ( ! `
  N )  /  ( ( ! `  ( N  -  K ) )  x.  ( ! `  K ) ) ) )
 
Theorembcval3 10733 Value of the binomial coefficient, 
N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0
 ... N ) ) 
 ->  ( N  _C  K )  =  0 )
 
Theorembcval4 10734 Value of the binomial coefficient, 
N choose  K, outside of its standard domain. Remark in [Gleason] p. 295. (Contributed by NM, 14-Jul-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  ( K  <  0  \/  N  <  K ) )  ->  ( N  _C  K )  =  0 )
 
Theorembcrpcl 10735 Closure of the binomial coefficient in the positive reals. (This is mostly a lemma before we have bccl2 10750.) (Contributed by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
 
Theorembccmpl 10736 "Complementing" its second argument doesn't change a binary coefficient. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 5-Mar-2014.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K )  =  ( N  _C  ( N  -  K ) ) )
 
Theorembcn0 10737  N choose 0 is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( N  _C  0
 )  =  1 )
 
Theorembc0k 10738 The binomial coefficient " 0 choose  K " is 0 for a positive integer K. Note that  ( 0  _C  0 )  =  1 (see bcn0 10737). (Contributed by Alexander van der Vekens, 1-Jan-2018.)
 |-  ( K  e.  NN  ->  ( 0  _C  K )  =  0 )
 
Theorembcnn 10739  N choose  N is 1. Remark in [Gleason] p. 296. (Contributed by NM, 17-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
 
Theorembcn1 10740 Binomial coefficient:  N choose  1. (Contributed by NM, 21-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( N  _C  1
 )  =  N )
 
Theorembcnp1n 10741 Binomial coefficient:  N  +  1 choose  N. (Contributed by NM, 20-Jun-2005.) (Revised by Mario Carneiro, 8-Nov-2013.)
 |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  N )  =  ( N  +  1 ) )
 
Theorembcm1k 10742 The proportion of one binomial coefficient to another with  K decreased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1
 ) )  /  K ) ) )
 
Theorembcp1n 10743 The proportion of one binomial coefficient to another with  N increased by 1. (Contributed by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 0 ... N )  ->  ( ( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  +  1 )  /  (
 ( N  +  1 )  -  K ) ) ) )
 
Theorembcp1nk 10744 The proportion of one binomial coefficient to another with  N and  K increased by 1. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( K  e.  (
 0 ... N )  ->  ( ( N  +  1 )  _C  ( K  +  1 )
 )  =  ( ( N  _C  K )  x.  ( ( N  +  1 )  /  ( K  +  1
 ) ) ) )
 
Theorembcval5 10745 Write out the top and bottom parts of the binomial coefficient  ( N  _C  K )  =  ( N  x.  ( N  -  1 )  x. 
...  x.  ( ( N  -  K )  +  1 ) )  /  K ! explicitly. In this form, it is valid even for  N  <  K, although it is no longer valid for nonpositive  K. (Contributed by Mario Carneiro, 22-May-2014.) (Revised by Jim Kingdon, 23-Apr-2023.)
 |-  ( ( N  e.  NN0  /\  K  e.  NN )  ->  ( N  _C  K )  =  ( (  seq ( ( N  -  K )  +  1
 ) (  x.  ,  _I  ) `  N ) 
 /  ( ! `  K ) ) )
 
Theorembcn2 10746 Binomial coefficient:  N choose  2. (Contributed by Mario Carneiro, 22-May-2014.)
 |-  ( N  e.  NN0  ->  ( N  _C  2
 )  =  ( ( N  x.  ( N  -  1 ) ) 
 /  2 ) )
 
Theorembcp1m1 10747 Compute the binomial coefficient of 
( N  +  1 ) over  ( N  - 
1 ) (Contributed by Scott Fenton, 11-May-2014.) (Revised by Mario Carneiro, 22-May-2014.)
 |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  -  1 ) )  =  ( ( ( N  +  1 )  x.  N )  / 
 2 ) )
 
Theorembcpasc 10748 Pascal's rule for the binomial coefficient, generalized to all integers  K. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
 
Theorembccl 10749 A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by NM, 10-Jul-2005.) (Revised by Mario Carneiro, 9-Nov-2013.)
 |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  _C  K )  e.  NN0 )
 
Theorembccl2 10750 A binomial coefficient, in its standard domain, is a positive integer. (Contributed by NM, 3-Jan-2006.) (Revised by Mario Carneiro, 10-Mar-2014.)
 |-  ( K  e.  (
 0 ... N )  ->  ( N  _C  K )  e.  NN )
 
Theorembcn2m1 10751 Compute the binomial coefficient " N choose 2 " from " ( N  -  1 ) choose 2 ": (N-1) + ( (N-1) 2 ) = ( N 2 ). (Contributed by Alexander van der Vekens, 7-Jan-2018.)
 |-  ( N  e.  NN  ->  ( ( N  -  1 )  +  (
 ( N  -  1
 )  _C  2 )
 )  =  ( N  _C  2 ) )
 
Theorembcn2p1 10752 Compute the binomial coefficient " ( N  +  1
) choose 2 " from " N choose 2 ": N + ( N 2 ) = ( (N+1) 2 ). (Contributed by Alexander van der Vekens, 8-Jan-2018.)
 |-  ( N  e.  NN0  ->  ( N  +  ( N  _C  2 ) )  =  ( ( N  +  1 )  _C  2 ) )
 
Theorempermnn 10753 The number of permutations of  N  -  R objects from a collection of  N objects is a positive integer. (Contributed by Jason Orendorff, 24-Jan-2007.)
 |-  ( R  e.  (
 0 ... N )  ->  ( ( ! `  N )  /  ( ! `  R ) )  e.  NN )
 
Theorembcnm1 10754 The binomial coefficent of  ( N  -  1 ) is  N. (Contributed by Scott Fenton, 16-May-2014.)
 |-  ( N  e.  NN0  ->  ( N  _C  ( N  -  1 ) )  =  N )
 
Theorem4bc3eq4 10755 The value of four choose three. (Contributed by Scott Fenton, 11-Jun-2016.)
 |-  ( 4  _C  3
 )  =  4
 
Theorem4bc2eq6 10756 The value of four choose two. (Contributed by Scott Fenton, 9-Jan-2017.)
 |-  ( 4  _C  2
 )  =  6
 
4.6.10  The ` # ` (set size) function
 
Syntaxchash 10757 Extend the definition of a class to include the set size function.
 class
 
Definitiondf-ihash 10758* Define the set size function ♯, which gives the cardinality of a finite set as a member of 
NN0, and assigns all infinite sets the value +oo. For example,  ( `  {
0 ,  1 ,  2 } )  =  3.

Note that we use the sharp sign (♯) for this function and we use the different character octothorpe (#) for the apartness relation (see df-ap 8541). We adopt the former notation from Corollary 8.2.4 of [AczelRathjen], p. 80 (although that work only defines it for finite sets).

This definition (in terms of  U. and 
~<_) is not taken directly from the literature, but for finite sets should be equivalent to the conventional definition that the size of a finite set is the unique natural number which is equinumerous to the given set. (Contributed by Jim Kingdon, 19-Feb-2022.)

 |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e.  _V  |->  U.
 { y  e.  ( om  u.  { om }
 )  |  y  ~<_  x } ) )
 
Theoremhashinfuni 10759* The ordinal size of an infinite set is  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( om  ~<_  A  ->  U.
 { y  e.  ( om  u.  { om }
 )  |  y  ~<_  A }  =  om )
 
Theoremhashinfom 10760 The value of the ♯ function on an infinite set. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( om  ~<_  A  ->  ( `  A )  = +oo )
 
Theoremhashennnuni 10761* The ordinal size of a set equinumerous to an element of  om is that element of  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
 |-  ( ( N  e.  om 
 /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
 
Theoremhashennn 10762* The size of a set equinumerous to an element of  om. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( N  e.  om 
 /\  N  ~~  A )  ->  ( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
 
Theoremhashcl 10763 Closure of the ♯ function. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 13-Jul-2014.)
 |-  ( A  e.  Fin  ->  ( `  A )  e. 
 NN0 )
 
Theoremhashfiv01gt1 10764 The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( M  e.  Fin  ->  ( ( `  M )  =  0  \/  ( `  M )  =  1  \/  1  <  ( `  M ) ) )
 
Theoremhashfz1 10765 The set  ( 1 ... N ) has  N elements. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |-  ( N  e.  NN0  ->  ( `  ( 1 ...
 N ) )  =  N )
 
Theoremhashen 10766 Two finite sets have the same number of elements iff they are equinumerous. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  A )  =  ( `  B ) 
 <->  A  ~~  B ) )
 
Theoremhasheqf1o 10767* The size of two finite sets is equal if and only if there is a bijection mapping one of the sets onto the other. (Contributed by Alexander van der Vekens, 17-Dec-2017.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  A )  =  ( `  B ) 
 <-> 
 E. f  f : A -1-1-onto-> B ) )
 
Theoremfiinfnf1o 10768* There is no bijection between a finite set and an infinite set. By infnfi 6897 the theorem would also hold if "infinite" were expressed as  om  ~<_  B. (Contributed by Alexander van der Vekens, 25-Dec-2017.)
 |-  ( ( A  e.  Fin  /\  -.  B  e.  Fin )  ->  -.  E. f  f : A -1-1-onto-> B )
 
Theoremfihasheqf1oi 10769 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  F : A -1-1-onto-> B )  ->  ( `  A )  =  ( `  B ) )
 
Theoremfihashf1rn 10770 The size of a finite set which is a one-to-one function is equal to the size of the function's range. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  F : A -1-1-> B )  ->  ( `  F )  =  ( `  ran  F ) )
 
Theoremfihasheqf1od 10771 The size of two finite sets is equal if there is a bijection mapping one of the sets onto the other. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  F : A -1-1-onto-> B )   =>    |-  ( ph  ->  ( `  A )  =  ( `  B ) )
 
Theoremfz1eqb 10772 Two possibly-empty 1-based finite sets of sequential integers are equal iff their endpoints are equal. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Mario Carneiro, 29-Mar-2014.)
 |-  ( ( M  e.  NN0  /\  N  e.  NN0 )  ->  ( ( 1 ...
 M )  =  ( 1 ... N )  <->  M  =  N )
 )
 
Theoremfiltinf 10773 The size of an infinite set is greater than the size of a finite set. (Contributed by Jim Kingdon, 21-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  om  ~<_  B )  ->  ( `  A )  < 
 ( `  B ) )
 
Theoremisfinite4im 10774 A finite set is equinumerous to the range of integers from one up to the hash value of the set. (Contributed by Jim Kingdon, 22-Feb-2022.)
 |-  ( A  e.  Fin  ->  ( 1 ... ( `  A ) )  ~~  A )
 
Theoremfihasheq0 10775 Two ways of saying a finite set is empty. (Contributed by Paul Chapman, 26-Oct-2012.) (Revised by Mario Carneiro, 27-Jul-2014.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
 |-  ( A  e.  Fin  ->  ( ( `  A )  =  0  <->  A  =  (/) ) )
 
Theoremfihashneq0 10776 Two ways of saying a finite set is not empty. Also, "A is inhabited" would be equivalent by fin0 6887. (Contributed by Alexander van der Vekens, 23-Sep-2018.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
 |-  ( A  e.  Fin  ->  ( 0  <  ( `  A )  <->  A  =/=  (/) ) )
 
Theoremhashnncl 10777 Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.)
 |-  ( A  e.  Fin  ->  ( ( `  A )  e.  NN  <->  A  =/=  (/) ) )
 
Theoremhash0 10778 The empty set has size zero. (Contributed by Mario Carneiro, 8-Jul-2014.)
 |-  ( `  (/) )  =  0
 
Theoremfihashelne0d 10779 A finite set with an element has nonzero size. (Contributed by Rohan Ridenour, 3-Aug-2023.)
 |-  ( ph  ->  B  e.  A )   &    |-  ( ph  ->  A  e.  Fin )   =>    |-  ( ph  ->  -.  ( `  A )  =  0 )
 
Theoremhashsng 10780 The size of a singleton. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 13-Feb-2013.)
 |-  ( A  e.  V  ->  ( `  { A }
 )  =  1 )
 
Theoremfihashen1 10781 A finite set has size 1 if and only if it is equinumerous to the ordinal 1. (Contributed by AV, 14-Apr-2019.) (Intuitionized by Jim Kingdon, 23-Feb-2022.)
 |-  ( A  e.  Fin  ->  ( ( `  A )  =  1  <->  A  ~~  1o )
 )
 
Theoremfihashfn 10782 A function on a finite set is equinumerous to its domain. (Contributed by Mario Carneiro, 12-Mar-2015.) (Intuitionized by Jim Kingdon, 24-Feb-2022.)
 |-  ( ( F  Fn  A  /\  A  e.  Fin )  ->  ( `  F )  =  ( `  A )
 )
 
Theoremfseq1hash 10783 The value of the size function on a finite 1-based sequence. (Contributed by Paul Chapman, 26-Oct-2012.) (Proof shortened by Mario Carneiro, 12-Mar-2015.)
 |-  ( ( N  e.  NN0  /\  F  Fn  ( 1
 ... N ) ) 
 ->  ( `  F )  =  N )
 
Theoremomgadd 10784 Mapping ordinal addition to integer addition. (Contributed by Jim Kingdon, 24-Feb-2022.)
 |-  G  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )   =>    |-  ( ( A  e.  om 
 /\  B  e.  om )  ->  ( G `  ( A  +o  B ) )  =  ( ( G `  A )  +  ( G `  B ) ) )
 
Theoremfihashdom 10785 Dominance relation for the size function. (Contributed by Jim Kingdon, 24-Feb-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  A )  <_  ( `  B )  <->  A  ~<_  B ) )
 
Theoremhashunlem 10786 Lemma for hashun 10787. Ordinal size of the union. (Contributed by Jim Kingdon, 25-Feb-2022.)
 |-  ( ph  ->  A  e.  Fin )   &    |-  ( ph  ->  B  e.  Fin )   &    |-  ( ph  ->  ( A  i^i  B )  =  (/) )   &    |-  ( ph  ->  N  e.  om )   &    |-  ( ph  ->  M  e.  om )   &    |-  ( ph  ->  A 
 ~~  N )   &    |-  ( ph  ->  B  ~~  M )   =>    |-  ( ph  ->  ( A  u.  B )  ~~  ( N  +o  M ) )
 
Theoremhashun 10787 The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( `  ( A  u.  B ) )  =  (
 ( `  A )  +  ( `  B ) ) )
 
Theorem1elfz0hash 10788 1 is an element of the finite set of sequential nonnegative integers bounded by the size of a nonempty finite set. (Contributed by AV, 9-May-2020.)
 |-  ( ( A  e.  Fin  /\  A  =/=  (/) )  -> 
 1  e.  ( 0
 ... ( `  A )
 ) )
 
Theoremhashunsng 10789 The size of the union of a finite set with a disjoint singleton is one more than the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.)
 |-  ( B  e.  V  ->  ( ( A  e.  Fin  /\  -.  B  e.  A )  ->  ( `  ( A  u.  { B } )
 )  =  ( ( `  A )  +  1 ) ) )
 
Theoremhashprg 10790 The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.)
 |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  =/=  B  <-> 
 ( `  { A ,  B } )  =  2 ) )
 
Theoremprhash2ex 10791 There is (at least) one set with two different elements: the unordered pair containing  0 and  1. In contrast to pr0hash2ex 10797, numbers are used instead of sets because their representation is shorter (and more comprehensive). (Contributed by AV, 29-Jan-2020.)
 |-  ( `  { 0 ,  1 } )  =  2
 
Theoremhashp1i 10792 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |-  A  e.  om   &    |-  B  =  suc  A   &    |-  ( `  A )  =  M   &    |-  ( M  +  1 )  =  N   =>    |-  ( `  B )  =  N
 
Theoremhash1 10793 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |-  ( `  1o )  =  1
 
Theoremhash2 10794 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |-  ( `  2o )  =  2
 
Theoremhash3 10795 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |-  ( `  3o )  =  3
 
Theoremhash4 10796 Size of a natural number ordinal. (Contributed by Mario Carneiro, 5-Jan-2016.)
 |-  ( `  4o )  =  4
 
Theorempr0hash2ex 10797 There is (at least) one set with two different elements: the unordered pair containing the empty set and the singleton containing the empty set. (Contributed by AV, 29-Jan-2020.)
 |-  ( `  { (/) ,  { (/)
 } } )  =  2
 
Theoremfihashss 10798 The size of a subset is less than or equal to the size of its superset. (Contributed by Alexander van der Vekens, 14-Jul-2018.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  B )  <_  ( `  A ) )
 
Theoremfiprsshashgt1 10799 The size of a superset of a proper unordered pair is greater than 1. (Contributed by AV, 6-Feb-2021.)
 |-  ( ( ( A  e.  V  /\  B  e.  W  /\  A  =/=  B )  /\  C  e.  Fin )  ->  ( { A ,  B }  C_  C  ->  2  <_  ( `  C ) ) )
 
Theoremfihashssdif 10800 The size of the difference of a finite set and a finite subset is the set's size minus the subset's. (Contributed by Jim Kingdon, 31-May-2022.)
 |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  B  C_  A )  ->  ( `  ( A  \  B ) )  =  ( ( `  A )  -  ( `  B ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-14917
  Copyright terms: Public domain < Previous  Next >