HomeHome Intuitionistic Logic Explorer
Theorem List (p. 108 of 132)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10701-10800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremredivapd 10701 Real part of a division. Related to remul2 10600. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( Re `  ( B  /  A ) )  =  ( ( Re `  B ) 
 /  A ) )
 
Theoremimdivapd 10702 Imaginary part of a division. Related to remul2 10600. (Contributed by Jim Kingdon, 15-Jun-2020.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  CC )   &    |-  ( ph  ->  A #  0 )   =>    |-  ( ph  ->  ( Im `  ( B  /  A ) )  =  ( ( Im `  B ) 
 /  A ) )
 
Theoremcrred 10703 The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( Re `  ( A  +  ( _i  x.  B ) ) )  =  A )
 
Theoremcrimd 10704 The imaginary part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by Mario Carneiro, 29-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( Im `  ( A  +  ( _i  x.  B ) ) )  =  B )
 
Theoremcnreim 10705 Complex apartness in terms of real and imaginary parts. See also apreim 8332 which is similar but with different notation. (Contributed by Jim Kingdon, 16-Dec-2023.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A #  B  <->  ( ( Re `  A ) #  ( Re `  B )  \/  ( Im `  A ) #  ( Im `  B ) ) ) )
 
4.7.3  Sequence convergence
 
Theoremcaucvgrelemrec 10706* Two ways to express a reciprocal. (Contributed by Jim Kingdon, 20-Jul-2021.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  ( iota_ r  e.  RR  ( A  x.  r
 )  =  1 )  =  ( 1  /  A ) )
 
Theoremcaucvgrelemcau 10707* Lemma for caucvgre 10708. Converting the Cauchy condition. (Contributed by Jim Kingdon, 20-Jul-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
  k )  +  ( 1  /  n ) )  /\  ( F `
  k )  < 
 ( ( F `  n )  +  (
 1  /  n )
 ) ) )   =>    |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  ( n  <RR  k  ->  (
 ( F `  n )  <RR  ( ( F `
  k )  +  ( iota_ r  e.  RR  ( n  x.  r
 )  =  1 ) )  /\  ( F `
  k )  <RR  ( ( F `  n )  +  ( iota_ r  e. 
 RR  ( n  x.  r )  =  1
 ) ) ) ) )
 
Theoremcaucvgre 10708* Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within  1  /  n of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
  k )  +  ( 1  /  n ) )  /\  ( F `
  k )  < 
 ( ( F `  n )  +  (
 1  /  n )
 ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `
  i )  +  x ) ) )
 
Theoremcvg1nlemcxze 10709 Lemma for cvg1n 10713. Rearranging an expression related to the rate of convergence. (Contributed by Jim Kingdon, 6-Aug-2021.)
 |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  X  e.  RR+ )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  E  e.  NN )   &    |-  ( ph  ->  A  e.  NN )   &    |-  ( ph  ->  ( ( ( ( C  x.  2 )  /  X )  /  Z )  +  A )  <  E )   =>    |-  ( ph  ->  ( C  /  ( E  x.  Z ) )  < 
 ( X  /  2
 ) )
 
Theoremcvg1nlemf 10710* Lemma for cvg1n 10713. The modified sequence  G is a sequence. (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  G : NN --> RR )
 
Theoremcvg1nlemcau 10711* Lemma for cvg1n 10713. By selecting spaced out terms for the modified sequence  G, the terms are within  1  /  n (without the constant  C). (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( G `  n )  <  ( ( G `  k )  +  ( 1  /  n ) )  /\  ( G `  k )  <  ( ( G `
  n )  +  ( 1  /  n ) ) ) )
 
Theoremcvg1nlemres 10712* Lemma for cvg1n 10713. The original sequence  F has a limit (turns out it is the same as the limit of the modified sequence  G). (Contributed by Jim Kingdon, 1-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   &    |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )   &    |-  ( ph  ->  Z  e.  NN )   &    |-  ( ph  ->  C  <  Z )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremcvg1n 10713* Convergence of real sequences.

This is a version of caucvgre 10708 with a constant multiplier  C on the rate of convergence. That is, all terms after the nth term must be within  C  /  n of the nth term.

(Contributed by Jim Kingdon, 1-Aug-2021.)

 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
 ( ( F `  n )  <  ( ( F `  k )  +  ( C  /  n ) )  /\  ( F `  k )  <  ( ( F `
  n )  +  ( C  /  n ) ) ) )   =>    |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremuzin2 10714 The upper integers are closed under intersection. (Contributed by Mario Carneiro, 24-Dec-2013.)
 |-  ( ( A  e.  ran  ZZ>= 
 /\  B  e.  ran  ZZ>= )  ->  ( A  i^i  B )  e.  ran  ZZ>= )
 
Theoremrexanuz 10715* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 25-Dec-2013.)
 |-  ( E. j  e. 
 ZZ  A. k  e.  ( ZZ>=
 `  j ) (
 ph  /\  ps )  <->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ps ) )
 
Theoremrexfiuz 10716* Combine finitely many different upper integer properties into one. (Contributed by Mario Carneiro, 6-Jun-2014.)
 |-  ( A  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  A  ph  <->  A. n  e.  A  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
 )
 
Theoremrexuz3 10717* Restrict the base of the upper integers set to another upper integers set. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( M  e.  ZZ  ->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph 
 <-> 
 E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ph )
 )
 
Theoremrexanuz2 10718* Combine two different upper integer properties into one. (Contributed by Mario Carneiro, 26-Dec-2013.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ph  /\  ps )  <->  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps ) )
 
Theoremr19.29uz 10719* A version of 19.29 1584 for upper integer quantifiers. (Contributed by Mario Carneiro, 10-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( ( A. k  e.  Z  ph  /\  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ps )  ->  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
 ( ph  /\  ps )
 )
 
Theoremr19.2uz 10720* A version of r19.2m 3419 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
 |-  Z  =  ( ZZ>= `  M )   =>    |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
 
Theoremrecvguniqlem 10721 Lemma for recvguniq 10722. Some of the rearrangements of the expressions. (Contributed by Jim Kingdon, 8-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  K  e.  NN )   &    |-  ( ph  ->  A  <  (
 ( F `  K )  +  ( ( A  -  B )  / 
 2 ) ) )   &    |-  ( ph  ->  ( F `  K )  <  ( B  +  ( ( A  -  B )  / 
 2 ) ) )   =>    |-  ( ph  -> F.  )
 
Theoremrecvguniq 10722* Limits are unique. (Contributed by Jim Kingdon, 7-Aug-2021.)
 |-  ( ph  ->  F : NN --> RR )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. x  e.  RR+  E. j  e. 
 NN  A. k  e.  ( ZZ>=
 `  j ) ( ( F `  k
 )  <  ( L  +  x )  /\  L  <  ( ( F `  k )  +  x ) ) )   &    |-  ( ph  ->  M  e.  RR )   &    |-  ( ph  ->  A. x  e.  RR+  E. j  e. 
 NN  A. k  e.  ( ZZ>=
 `  j ) ( ( F `  k
 )  <  ( M  +  x )  /\  M  <  ( ( F `  k )  +  x ) ) )   =>    |-  ( ph  ->  L  =  M )
 
4.7.4  Square root; absolute value
 
Syntaxcsqrt 10723 Extend class notation to include square root of a complex number.
 class  sqr
 
Syntaxcabs 10724 Extend class notation to include a function for the absolute value (modulus) of a complex number.
 class  abs
 
Definitiondf-rsqrt 10725* Define a function whose value is the square root of a nonnegative real number.

Defining the square root for complex numbers has one difficult part: choosing between the two roots. The usual way to define a principal square root for all complex numbers relies on excluded middle or something similar. But in the case of a nonnegative real number, we don't have the complications presented for general complex numbers, and we can choose the nonnegative root.

(Contributed by Jim Kingdon, 23-Aug-2020.)

 |- 
 sqr  =  ( x  e.  RR  |->  ( iota_ y  e. 
 RR  ( ( y ^ 2 )  =  x  /\  0  <_  y ) ) )
 
Definitiondf-abs 10726 Define the function for the absolute value (modulus) of a complex number. (Contributed by NM, 27-Jul-1999.)
 |- 
 abs  =  ( x  e.  CC  |->  ( sqr `  ( x  x.  ( * `  x ) ) ) )
 
Theoremsqrtrval 10727* Value of square root function. (Contributed by Jim Kingdon, 23-Aug-2020.)
 |-  ( A  e.  RR  ->  ( sqr `  A )  =  ( iota_ x  e. 
 RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) ) )
 
Theoremabsval 10728 The absolute value (modulus) of a complex number. Proposition 10-3.7(a) of [Gleason] p. 133. (Contributed by NM, 27-Jul-1999.) (Revised by Mario Carneiro, 7-Nov-2013.)
 |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( A  x.  ( * `  A ) ) ) )
 
Theoremrennim 10729 A real number does not lie on the negative imaginary axis. (Contributed by Mario Carneiro, 8-Jul-2013.)
 |-  ( A  e.  RR  ->  ( _i  x.  A )  e/  RR+ )
 
Theoremsqrt0rlem 10730 Lemma for sqrt0 10731. (Contributed by Jim Kingdon, 26-Aug-2020.)
 |-  ( ( A  e.  RR  /\  ( ( A ^ 2 )  =  0  /\  0  <_  A ) )  <->  A  =  0
 )
 
Theoremsqrt0 10731 Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( sqr `  0
 )  =  0
 
Theoremresqrexlem1arp 10732 Lemma for resqrex 10753.  1  +  A is a positive real (expressed in a way that will help apply seqf 10189 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( NN  X.  {
 ( 1  +  A ) } ) `  N )  e.  RR+ )
 
Theoremresqrexlemp1rp 10733* Lemma for resqrex 10753. Applying the recursion rule yields a positive real (expressed in a way that will help apply seqf 10189 and similar theorems). (Contributed by Jim Kingdon, 28-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ( ph  /\  ( B  e.  RR+  /\  C  e.  RR+ ) )  ->  ( B ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) C )  e.  RR+ )
 
Theoremresqrexlemf 10734* Lemma for resqrex 10753. The sequence is a function. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  F : NN --> RR+ )
 
Theoremresqrexlemf1 10735* Lemma for resqrex 10753. Initial value. Although this sequence converges to the square root with any positive initial value, this choice makes various steps in the proof of convergence easier. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.) (Revised by Jim Kingdon, 16-Oct-2022.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  ( F `  1 )  =  ( 1  +  A ) )
 
Theoremresqrexlemfp1 10736* Lemma for resqrex 10753. Recursion rule. This sequence is the ancient method for computing square roots, often known as the babylonian method, although known to many ancient cultures. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  ( F `  ( N  +  1 ) )  =  ( ( ( F `
  N )  +  ( A  /  ( F `  N ) ) )  /  2 ) )
 
Theoremresqrexlemover 10737* Lemma for resqrex 10753. Each element of the sequence is an overestimate. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  A  <  ( ( F `  N ) ^ 2
 ) )
 
Theoremresqrexlemdec 10738* Lemma for resqrex 10753. The sequence is decreasing. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  ( F `  ( N  +  1 ) )  < 
 ( F `  N ) )
 
Theoremresqrexlemdecn 10739* Lemma for resqrex 10753. The sequence is decreasing. (Contributed by Jim Kingdon, 31-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  <  M )   =>    |-  ( ph  ->  ( F `  M )  < 
 ( F `  N ) )
 
Theoremresqrexlemlo 10740* Lemma for resqrex 10753. A (variable) lower bound for each term of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 1  /  ( 2 ^ N ) )  < 
 ( F `  N ) )
 
Theoremresqrexlemcalc1 10741* Lemma for resqrex 10753. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( ( F `  ( N  +  1
 ) ) ^ 2
 )  -  A )  =  ( ( ( ( ( F `  N ) ^ 2
 )  -  A ) ^ 2 )  /  ( 4  x.  (
 ( F `  N ) ^ 2 ) ) ) )
 
Theoremresqrexlemcalc2 10742* Lemma for resqrex 10753. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( ( F `  ( N  +  1
 ) ) ^ 2
 )  -  A ) 
 <_  ( ( ( ( F `  N ) ^ 2 )  -  A )  /  4
 ) )
 
Theoremresqrexlemcalc3 10743* Lemma for resqrex 10753. Some of the calculations involved in showing that the sequence converges. (Contributed by Mario Carneiro and Jim Kingdon, 29-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ( ph  /\  N  e.  NN )  ->  (
 ( ( F `  N ) ^ 2
 )  -  A ) 
 <_  ( ( ( F `
  1 ) ^
 2 )  /  (
 4 ^ ( N  -  1 ) ) ) )
 
Theoremresqrexlemnmsq 10744* Lemma for resqrex 10753. The difference between the squares of two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 30-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  <_  M )   =>    |-  ( ph  ->  (
 ( ( F `  N ) ^ 2
 )  -  ( ( F `  M ) ^ 2 ) )  <  ( ( ( F `  1 ) ^ 2 )  /  ( 4 ^ ( N  -  1 ) ) ) )
 
Theoremresqrexlemnm 10745* Lemma for resqrex 10753. The difference between two terms of the sequence. (Contributed by Mario Carneiro and Jim Kingdon, 31-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  N  e.  NN )   &    |-  ( ph  ->  M  e.  NN )   &    |-  ( ph  ->  N  <_  M )   =>    |-  ( ph  ->  (
 ( F `  N )  -  ( F `  M ) )  < 
 ( ( ( ( F `  1 ) ^ 2 )  x.  2 )  /  (
 2 ^ ( N  -  1 ) ) ) )
 
Theoremresqrexlemcvg 10746* Lemma for resqrex 10753. The sequence has a limit. (Contributed by Jim Kingdon, 6-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  E. r  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( r  +  x )  /\  r  < 
 ( ( F `  i )  +  x ) ) )
 
Theoremresqrexlemgt0 10747* Lemma for resqrex 10753. A limit is nonnegative. (Contributed by Jim Kingdon, 7-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   =>    |-  ( ph  ->  0  <_  L )
 
Theoremresqrexlemoverl 10748* Lemma for resqrex 10753. Every term in the sequence is an overestimate compared with the limit 
L. Although this theorem is stated in terms of a particular sequence the proof could be adapted for any decreasing convergent sequence. (Contributed by Jim Kingdon, 9-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   &    |-  ( ph  ->  K  e.  NN )   =>    |-  ( ph  ->  L  <_  ( F `  K ) )
 
Theoremresqrexlemglsq 10749* Lemma for resqrex 10753. The sequence formed by squaring each term of  F converges to  ( L ^
2 ). (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   &    |-  G  =  ( x  e.  NN  |->  ( ( F `
  x ) ^
 2 ) )   =>    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
 ( ( G `  k )  <  ( ( L ^ 2 )  +  e )  /\  ( L ^ 2 )  <  ( ( G `
  k )  +  e ) ) )
 
Theoremresqrexlemga 10750* Lemma for resqrex 10753. The sequence formed by squaring each term of  F converges to  A. (Contributed by Mario Carneiro and Jim Kingdon, 8-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   &    |-  G  =  ( x  e.  NN  |->  ( ( F `
  x ) ^
 2 ) )   =>    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
 ( ( G `  k )  <  ( A  +  e )  /\  A  <  ( ( G `
  k )  +  e ) ) )
 
Theoremresqrexlemsqa 10751* Lemma for resqrex 10753. The square of a limit is  A. (Contributed by Jim Kingdon, 7-Aug-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  L  e.  RR )   &    |-  ( ph  ->  A. e  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
 ( ( F `  i )  <  ( L  +  e )  /\  L  <  ( ( F `
  i )  +  e ) ) )   =>    |-  ( ph  ->  ( L ^ 2 )  =  A )
 
Theoremresqrexlemex 10752* Lemma for resqrex 10753. Existence of square root given a sequence which converges to the square root. (Contributed by Mario Carneiro and Jim Kingdon, 27-Jul-2021.)
 |-  F  =  seq 1
 ( ( y  e.  RR+ ,  z  e.  RR+  |->  ( ( y  +  ( A  /  y
 ) )  /  2
 ) ) ,  ( NN  X.  { ( 1  +  A ) }
 ) )   &    |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <_  A )   =>    |-  ( ph  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^
 2 )  =  A ) )
 
Theoremresqrex 10753* Existence of a square root for positive reals. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E. x  e.  RR  ( 0  <_  x  /\  ( x ^ 2
 )  =  A ) )
 
Theoremrsqrmo 10754* Uniqueness for the square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E* x  e.  RR  ( ( x ^
 2 )  =  A  /\  0  <_  x ) )
 
Theoremrersqreu 10755* Existence and uniqueness for the real square root function. (Contributed by Jim Kingdon, 10-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  E! x  e. 
 RR  ( ( x ^ 2 )  =  A  /\  0  <_  x ) )
 
Theoremresqrtcl 10756 Closure of the square root function. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( sqr `  A )  e.  RR )
 
Theoremrersqrtthlem 10757 Lemma for resqrtth 10758. (Contributed by Jim Kingdon, 10-Aug-2021.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( ( sqr `  A ) ^ 2 )  =  A  /\  0  <_  ( sqr `  A )
 ) )
 
Theoremresqrtth 10758 Square root theorem over the reals. Theorem I.35 of [Apostol] p. 29. (Contributed by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( sqr `  A ) ^ 2
 )  =  A )
 
Theoremremsqsqrt 10759 Square of square root. (Contributed by Mario Carneiro, 10-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( sqr `  A )  x.  ( sqr `  A ) )  =  A )
 
Theoremsqrtge0 10760 The square root function is nonnegative for nonnegative input. (Contributed by NM, 26-May-1999.) (Revised by Mario Carneiro, 9-Jul-2013.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  0  <_  ( sqr `  A ) )
 
Theoremsqrtgt0 10761 The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  0  <  ( sqr `  A ) )
 
Theoremsqrtmul 10762 Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( sqr `  ( A  x.  B ) )  =  ( ( sqr `  A )  x.  ( sqr `  B ) ) )
 
Theoremsqrtle 10763 Square root is monotonic. (Contributed by NM, 17-Mar-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <_  B  <->  ( sqr `  A )  <_  ( sqr `  B ) ) )
 
Theoremsqrtlt 10764 Square root is strictly monotonic. Closed form of sqrtlti 10864. (Contributed by Scott Fenton, 17-Apr-2014.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <  B  <->  ( sqr `  A )  <  ( sqr `  B ) ) )
 
Theoremsqrt11ap 10765 Analogue to sqrt11 10766 but for apartness. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( sqr `  A ) #  ( sqr `  B ) 
 <->  A #  B ) )
 
Theoremsqrt11 10766 The square root function is one-to-one. Also see sqrt11ap 10765 which would follow easily from this given excluded middle, but which is proved another way without it. (Contributed by Scott Fenton, 11-Jun-2013.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( sqr `  A )  =  ( sqr `  B )  <->  A  =  B ) )
 
Theoremsqrt00 10767 A square root is zero iff its argument is 0. (Contributed by NM, 27-Jul-1999.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( ( sqr `  A )  =  0  <->  A  =  0 )
 )
 
Theoremrpsqrtcl 10768 The square root of a positive real is a positive real. (Contributed by NM, 22-Feb-2008.)
 |-  ( A  e.  RR+  ->  ( sqr `  A )  e.  RR+ )
 
Theoremsqrtdiv 10769 Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR+ )  ->  ( sqr `  ( A  /  B ) )  =  ( ( sqr `  A )  /  ( sqr `  B ) ) )
 
Theoremsqrtsq2 10770 Relationship between square root and squares. (Contributed by NM, 31-Jul-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( sqr `  A )  =  B  <->  A  =  ( B ^ 2 ) ) )
 
Theoremsqrtsq 10771 Square root of square. (Contributed by NM, 14-Jan-2006.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( sqr `  ( A ^ 2 ) )  =  A )
 
Theoremsqrtmsq 10772 Square root of square. (Contributed by NM, 2-Aug-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( sqr `  ( A  x.  A ) )  =  A )
 
Theoremsqrt1 10773 The square root of 1 is 1. (Contributed by NM, 31-Jul-1999.)
 |-  ( sqr `  1
 )  =  1
 
Theoremsqrt4 10774 The square root of 4 is 2. (Contributed by NM, 3-Aug-1999.)
 |-  ( sqr `  4
 )  =  2
 
Theoremsqrt9 10775 The square root of 9 is 3. (Contributed by NM, 11-May-2004.)
 |-  ( sqr `  9
 )  =  3
 
Theoremsqrt2gt1lt2 10776 The square root of 2 is bounded by 1 and 2. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 6-Sep-2013.)
 |-  ( 1  <  ( sqr `  2 )  /\  ( sqr `  2 )  <  2 )
 
Theoremabsneg 10777 Absolute value of negative. (Contributed by NM, 27-Feb-2005.)
 |-  ( A  e.  CC  ->  ( abs `  -u A )  =  ( abs `  A ) )
 
Theoremabscl 10778 Real closure of absolute value. (Contributed by NM, 3-Oct-1999.)
 |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
 
Theoremabscj 10779 The absolute value of a number and its conjugate are the same. Proposition 10-3.7(b) of [Gleason] p. 133. (Contributed by NM, 28-Apr-2005.)
 |-  ( A  e.  CC  ->  ( abs `  ( * `  A ) )  =  ( abs `  A ) )
 
Theoremabsvalsq 10780 Square of value of absolute value function. (Contributed by NM, 16-Jan-2006.)
 |-  ( A  e.  CC  ->  ( ( abs `  A ) ^ 2 )  =  ( A  x.  ( * `  A ) ) )
 
Theoremabsvalsq2 10781 Square of value of absolute value function. (Contributed by NM, 1-Feb-2007.)
 |-  ( A  e.  CC  ->  ( ( abs `  A ) ^ 2 )  =  ( ( ( Re
 `  A ) ^
 2 )  +  (
 ( Im `  A ) ^ 2 ) ) )
 
Theoremsqabsadd 10782 Square of absolute value of sum. Proposition 10-3.7(g) of [Gleason] p. 133. (Contributed by NM, 21-Jan-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  +  B ) ) ^ 2
 )  =  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  +  ( 2  x.  ( Re `  ( A  x.  ( * `  B ) ) ) ) ) )
 
Theoremsqabssub 10783 Square of absolute value of difference. (Contributed by NM, 21-Jan-2007.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  ( A  -  B ) ) ^ 2
 )  =  ( ( ( ( abs `  A ) ^ 2 )  +  ( ( abs `  B ) ^ 2 ) )  -  ( 2  x.  ( Re `  ( A  x.  ( * `  B ) ) ) ) ) )
 
Theoremabsval2 10784 Value of absolute value function. Definition 10.36 of [Gleason] p. 133. (Contributed by NM, 17-Mar-2005.)
 |-  ( A  e.  CC  ->  ( abs `  A )  =  ( sqr `  ( ( ( Re
 `  A ) ^
 2 )  +  (
 ( Im `  A ) ^ 2 ) ) ) )
 
Theoremabs0 10785 The absolute value of 0. (Contributed by NM, 26-Mar-2005.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( abs `  0
 )  =  0
 
Theoremabsi 10786 The absolute value of the imaginary unit. (Contributed by NM, 26-Mar-2005.)
 |-  ( abs `  _i )  =  1
 
Theoremabsge0 10787 Absolute value is nonnegative. (Contributed by NM, 20-Nov-2004.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( A  e.  CC  ->  0  <_  ( abs `  A ) )
 
Theoremabsrpclap 10788 The absolute value of a number apart from zero is a positive real. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ( A  e.  CC  /\  A #  0 ) 
 ->  ( abs `  A )  e.  RR+ )
 
Theoremabs00ap 10789 The absolute value of a number is apart from zero iff the number is apart from zero. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( A  e.  CC  ->  ( ( abs `  A ) #  0  <->  A #  0 )
 )
 
Theoremabsext 10790 Strong extensionality for absolute value. (Contributed by Jim Kingdon, 12-Aug-2021.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( abs `  A ) #  ( abs `  B )  ->  A #  B ) )
 
Theoremabs00 10791 The absolute value of a number is zero iff the number is zero. Also see abs00ap 10789 which is similar but for apartness. Proposition 10-3.7(c) of [Gleason] p. 133. (Contributed by NM, 26-Sep-2005.) (Proof shortened by Mario Carneiro, 29-May-2016.)
 |-  ( A  e.  CC  ->  ( ( abs `  A )  =  0  <->  A  =  0
 ) )
 
Theoremabs00ad 10792 A complex number is zero iff its absolute value is zero. Deduction form of abs00 10791. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  e.  CC )   =>    |-  ( ph  ->  (
 ( abs `  A )  =  0  <->  A  =  0
 ) )
 
Theoremabs00bd 10793 If a complex number is zero, its absolute value is zero. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( ph  ->  A  =  0 )   =>    |-  ( ph  ->  ( abs `  A )  =  0 )
 
Theoremabsreimsq 10794 Square of the absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 1-Feb-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( abs `  ( A  +  ( _i  x.  B ) ) ) ^ 2 )  =  ( ( A ^ 2 )  +  ( B ^ 2 ) ) )
 
Theoremabsreim 10795 Absolute value of a number that has been decomposed into real and imaginary parts. (Contributed by NM, 14-Jan-2006.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( abs `  ( A  +  ( _i  x.  B ) ) )  =  ( sqr `  (
 ( A ^ 2
 )  +  ( B ^ 2 ) ) ) )
 
Theoremabsmul 10796 Absolute value distributes over multiplication. Proposition 10-3.7(f) of [Gleason] p. 133. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( abs `  ( A  x.  B ) )  =  ( ( abs `  A )  x.  ( abs `  B ) ) )
 
Theoremabsdivap 10797 Absolute value distributes over division. (Contributed by Jim Kingdon, 11-Aug-2021.)
 |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( abs `  ( A  /  B ) )  =  ( ( abs `  A )  /  ( abs `  B ) ) )
 
Theoremabsid 10798 A nonnegative number is its own absolute value. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 29-May-2016.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( abs `  A )  =  A )
 
Theoremabs1 10799 The absolute value of 1. Common special case. (Contributed by David A. Wheeler, 16-Jul-2016.)
 |-  ( abs `  1
 )  =  1
 
Theoremabsnid 10800 A negative number is the negative of its own absolute value. (Contributed by NM, 27-Feb-2005.)
 |-  ( ( A  e.  RR  /\  A  <_  0
 )  ->  ( abs `  A )  =  -u A )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13145
  Copyright terms: Public domain < Previous  Next >