ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennn Unicode version

Theorem hashennn 10419
Description: The size of a set equinumerous to an element of  om. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashennn  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Distinct variable groups:    x, A    x, N

Proof of Theorem hashennn
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10415 . . . . 5  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
21fveq1i 5376 . . . 4  |-  ( `  A
)  =  ( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )
3 funmpt 5119 . . . . 5  |-  Fun  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
4 hashennnuni 10418 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
54eqcomd 2120 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
6 nnfi 6719 . . . . . . . . . . 11  |-  ( N  e.  om  ->  N  e.  Fin )
76adantr 272 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  Fin )
8 simpr 109 . . . . . . . . . . 11  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  ~~  A )
98ensymd 6631 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  ~~  N )
10 enfii 6721 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  A  ~~  N )  ->  A  e.  Fin )
117, 9, 10syl2anc 406 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  Fin )
12 simpl 108 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  om )
13 simpr 109 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  z  =  N )
14 breq2 3899 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
y  ~<_  x  <->  y  ~<_  A ) )
1514adantr 272 . . . . . . . . . . . . 13  |-  ( ( x  =  A  /\  z  =  N )  ->  ( y  ~<_  x  <->  y  ~<_  A ) )
1615rabbidv 2646 . . . . . . . . . . . 12  |-  ( ( x  =  A  /\  z  =  N )  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
1716unieqd 3713 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1813, 17eqeq12d 2129 . . . . . . . . . 10  |-  ( ( x  =  A  /\  z  =  N )  ->  ( z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
1918opelopabga 4145 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
2011, 12, 19syl2anc 406 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
215, 20mpbird 166 . . . . . . 7  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e. 
{ <. x ,  z
>.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } } )
22 mptv 3985 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }
2321, 22syl6eleqr 2208 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e.  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
24 opeldmg 4704 . . . . . . 7  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2511, 12, 24syl2anc 406 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2623, 25mpd 13 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )
27 fvco 5445 . . . . 5  |-  ( ( Fun  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
283, 26, 27sylancr 408 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
292, 28syl5eq 2159 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
3011elexd 2670 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  _V )
314, 12eqeltrd 2191 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )
3214rabbidv 2646 . . . . . . . 8  |-  ( x  =  A  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3332unieqd 3713 . . . . . . 7  |-  ( x  =  A  ->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
34 eqid 2115 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
3533, 34fvmptg 5451 . . . . . 6  |-  ( ( A  e.  _V  /\  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )  ->  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
)  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
3630, 31, 35syl2anc 406 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3736, 4eqtrd 2147 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  N )
3837fveq2d 5379 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
3929, 38eqtrd 2147 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
40 ordom 4480 . . . . . . 7  |-  Ord  om
41 ordirr 4417 . . . . . . 7  |-  ( Ord 
om  ->  -.  om  e.  om )
4240, 41ax-mp 7 . . . . . 6  |-  -.  om  e.  om
43 eleq1 2177 . . . . . 6  |-  ( om  =  N  ->  ( om  e.  om  <->  N  e.  om ) )
4442, 43mtbii 646 . . . . 5  |-  ( om  =  N  ->  -.  N  e.  om )
4544necon2ai 2336 . . . 4  |-  ( N  e.  om  ->  om  =/=  N )
46 fvunsng 5568 . . . 4  |-  ( ( N  e.  om  /\  om  =/=  N )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4745, 46mpdan 415 . . 3  |-  ( N  e.  om  ->  (
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } ) `  N
)  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  N ) )
4847adantr 272 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4939, 48eqtrd 2147 1  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1314    e. wcel 1463    =/= wne 2282   {crab 2394   _Vcvv 2657    u. cun 3035   {csn 3493   <.cop 3496   U.cuni 3702   class class class wbr 3895   {copab 3948    |-> cmpt 3949   Ord word 4244   omcom 4464   dom cdm 4499    o. ccom 4503   Fun wfun 5075   ` cfv 5081  (class class class)co 5728  freccfrec 6241    ~~ cen 6586    ~<_ cdom 6587   Fincfn 6588   0cc0 7547   1c1 7548    + caddc 7550   +oocpnf 7721   ZZcz 8958  ♯chash 10414
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462
This theorem depends on definitions:  df-bi 116  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-ral 2395  df-rex 2396  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-iord 4248  df-on 4250  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-er 6383  df-en 6589  df-dom 6590  df-fin 6591  df-ihash 10415
This theorem is referenced by:  hashcl  10420  hashfz1  10422  hashen  10423  fihashdom  10442  hashun  10444
  Copyright terms: Public domain W3C validator