Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashennn | Unicode version |
Description: The size of a set equinumerous to an element of . (Contributed by Jim Kingdon, 21-Feb-2022.) |
Ref | Expression |
---|---|
hashennn | ♯ frec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ihash 10710 | . . . . 5 ♯ frec | |
2 | 1 | fveq1i 5497 | . . . 4 ♯ frec |
3 | funmpt 5236 | . . . . 5 | |
4 | hashennnuni 10713 | . . . . . . . . 9 | |
5 | 4 | eqcomd 2176 | . . . . . . . 8 |
6 | nnfi 6850 | . . . . . . . . . . 11 | |
7 | 6 | adantr 274 | . . . . . . . . . 10 |
8 | simpr 109 | . . . . . . . . . . 11 | |
9 | 8 | ensymd 6761 | . . . . . . . . . 10 |
10 | enfii 6852 | . . . . . . . . . 10 | |
11 | 7, 9, 10 | syl2anc 409 | . . . . . . . . 9 |
12 | simpl 108 | . . . . . . . . 9 | |
13 | simpr 109 | . . . . . . . . . . 11 | |
14 | breq2 3993 | . . . . . . . . . . . . . 14 | |
15 | 14 | adantr 274 | . . . . . . . . . . . . 13 |
16 | 15 | rabbidv 2719 | . . . . . . . . . . . 12 |
17 | 16 | unieqd 3807 | . . . . . . . . . . 11 |
18 | 13, 17 | eqeq12d 2185 | . . . . . . . . . 10 |
19 | 18 | opelopabga 4248 | . . . . . . . . 9 |
20 | 11, 12, 19 | syl2anc 409 | . . . . . . . 8 |
21 | 5, 20 | mpbird 166 | . . . . . . 7 |
22 | mptv 4086 | . . . . . . 7 | |
23 | 21, 22 | eleqtrrdi 2264 | . . . . . 6 |
24 | opeldmg 4816 | . . . . . . 7 | |
25 | 11, 12, 24 | syl2anc 409 | . . . . . 6 |
26 | 23, 25 | mpd 13 | . . . . 5 |
27 | fvco 5566 | . . . . 5 frec frec | |
28 | 3, 26, 27 | sylancr 412 | . . . 4 frec frec |
29 | 2, 28 | eqtrid 2215 | . . 3 ♯ frec |
30 | 11 | elexd 2743 | . . . . . 6 |
31 | 4, 12 | eqeltrd 2247 | . . . . . 6 |
32 | 14 | rabbidv 2719 | . . . . . . . 8 |
33 | 32 | unieqd 3807 | . . . . . . 7 |
34 | eqid 2170 | . . . . . . 7 | |
35 | 33, 34 | fvmptg 5572 | . . . . . 6 |
36 | 30, 31, 35 | syl2anc 409 | . . . . 5 |
37 | 36, 4 | eqtrd 2203 | . . . 4 |
38 | 37 | fveq2d 5500 | . . 3 frec frec |
39 | 29, 38 | eqtrd 2203 | . 2 ♯ frec |
40 | ordom 4591 | . . . . . . 7 | |
41 | ordirr 4526 | . . . . . . 7 | |
42 | 40, 41 | ax-mp 5 | . . . . . 6 |
43 | eleq1 2233 | . . . . . 6 | |
44 | 42, 43 | mtbii 669 | . . . . 5 |
45 | 44 | necon2ai 2394 | . . . 4 |
46 | fvunsng 5690 | . . . 4 frec frec | |
47 | 45, 46 | mpdan 419 | . . 3 frec frec |
48 | 47 | adantr 274 | . 2 frec frec |
49 | 39, 48 | eqtrd 2203 | 1 ♯ frec |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wne 2340 crab 2452 cvv 2730 cun 3119 csn 3583 cop 3586 cuni 3796 class class class wbr 3989 copab 4049 cmpt 4050 word 4347 com 4574 cdm 4611 ccom 4615 wfun 5192 cfv 5198 (class class class)co 5853 freccfrec 6369 cen 6716 cdom 6717 cfn 6718 cc0 7774 c1 7775 caddc 7777 cpnf 7951 cz 9212 ♯chash 10709 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 df-ihash 10710 |
This theorem is referenced by: hashcl 10715 hashfz1 10717 hashen 10718 fihashdom 10738 hashun 10740 |
Copyright terms: Public domain | W3C validator |