ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennn Unicode version

Theorem hashennn 10962
Description: The size of a set equinumerous to an element of  om. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashennn  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Distinct variable groups:    x, A    x, N

Proof of Theorem hashennn
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10958 . . . . 5  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
21fveq1i 5600 . . . 4  |-  ( `  A
)  =  ( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )
3 funmpt 5328 . . . . 5  |-  Fun  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
4 hashennnuni 10961 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
54eqcomd 2213 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
6 nnfi 6995 . . . . . . . . . . 11  |-  ( N  e.  om  ->  N  e.  Fin )
76adantr 276 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  Fin )
8 simpr 110 . . . . . . . . . . 11  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  ~~  A )
98ensymd 6898 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  ~~  N )
10 enfii 6997 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  A  ~~  N )  ->  A  e.  Fin )
117, 9, 10syl2anc 411 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  Fin )
12 simpl 109 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  om )
13 simpr 110 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  z  =  N )
14 breq2 4063 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
y  ~<_  x  <->  y  ~<_  A ) )
1514adantr 276 . . . . . . . . . . . . 13  |-  ( ( x  =  A  /\  z  =  N )  ->  ( y  ~<_  x  <->  y  ~<_  A ) )
1615rabbidv 2765 . . . . . . . . . . . 12  |-  ( ( x  =  A  /\  z  =  N )  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
1716unieqd 3875 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1813, 17eqeq12d 2222 . . . . . . . . . 10  |-  ( ( x  =  A  /\  z  =  N )  ->  ( z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
1918opelopabga 4327 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
2011, 12, 19syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
215, 20mpbird 167 . . . . . . 7  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e. 
{ <. x ,  z
>.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } } )
22 mptv 4157 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }
2321, 22eleqtrrdi 2301 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e.  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
24 opeldmg 4902 . . . . . . 7  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2511, 12, 24syl2anc 411 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2623, 25mpd 13 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )
27 fvco 5672 . . . . 5  |-  ( ( Fun  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
283, 26, 27sylancr 414 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
292, 28eqtrid 2252 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
3011elexd 2790 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  _V )
314, 12eqeltrd 2284 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )
3214rabbidv 2765 . . . . . . . 8  |-  ( x  =  A  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3332unieqd 3875 . . . . . . 7  |-  ( x  =  A  ->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
34 eqid 2207 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
3533, 34fvmptg 5678 . . . . . 6  |-  ( ( A  e.  _V  /\  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )  ->  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
)  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
3630, 31, 35syl2anc 411 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3736, 4eqtrd 2240 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  N )
3837fveq2d 5603 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
3929, 38eqtrd 2240 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
40 ordom 4673 . . . . . . 7  |-  Ord  om
41 ordirr 4608 . . . . . . 7  |-  ( Ord 
om  ->  -.  om  e.  om )
4240, 41ax-mp 5 . . . . . 6  |-  -.  om  e.  om
43 eleq1 2270 . . . . . 6  |-  ( om  =  N  ->  ( om  e.  om  <->  N  e.  om ) )
4442, 43mtbii 676 . . . . 5  |-  ( om  =  N  ->  -.  N  e.  om )
4544necon2ai 2432 . . . 4  |-  ( N  e.  om  ->  om  =/=  N )
46 fvunsng 5801 . . . 4  |-  ( ( N  e.  om  /\  om  =/=  N )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4745, 46mpdan 421 . . 3  |-  ( N  e.  om  ->  (
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } ) `  N
)  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  N ) )
4847adantr 276 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4939, 48eqtrd 2240 1  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178    =/= wne 2378   {crab 2490   _Vcvv 2776    u. cun 3172   {csn 3643   <.cop 3646   U.cuni 3864   class class class wbr 4059   {copab 4120    |-> cmpt 4121   Ord word 4427   omcom 4656   dom cdm 4693    o. ccom 4697   Fun wfun 5284   ` cfv 5290  (class class class)co 5967  freccfrec 6499    ~~ cen 6848    ~<_ cdom 6849   Fincfn 6850   0cc0 7960   1c1 7961    + caddc 7963   +oocpnf 8139   ZZcz 9407  ♯chash 10957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-ihash 10958
This theorem is referenced by:  hashcl  10963  hashfz1  10965  hashen  10966  fihashdom  10985  hashun  10987
  Copyright terms: Public domain W3C validator