ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennn Unicode version

Theorem hashennn 10714
Description: The size of a set equinumerous to an element of  om. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashennn  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Distinct variable groups:    x, A    x, N

Proof of Theorem hashennn
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10710 . . . . 5  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
21fveq1i 5497 . . . 4  |-  ( `  A
)  =  ( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )
3 funmpt 5236 . . . . 5  |-  Fun  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
4 hashennnuni 10713 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
54eqcomd 2176 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
6 nnfi 6850 . . . . . . . . . . 11  |-  ( N  e.  om  ->  N  e.  Fin )
76adantr 274 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  Fin )
8 simpr 109 . . . . . . . . . . 11  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  ~~  A )
98ensymd 6761 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  ~~  N )
10 enfii 6852 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  A  ~~  N )  ->  A  e.  Fin )
117, 9, 10syl2anc 409 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  Fin )
12 simpl 108 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  om )
13 simpr 109 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  z  =  N )
14 breq2 3993 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
y  ~<_  x  <->  y  ~<_  A ) )
1514adantr 274 . . . . . . . . . . . . 13  |-  ( ( x  =  A  /\  z  =  N )  ->  ( y  ~<_  x  <->  y  ~<_  A ) )
1615rabbidv 2719 . . . . . . . . . . . 12  |-  ( ( x  =  A  /\  z  =  N )  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
1716unieqd 3807 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1813, 17eqeq12d 2185 . . . . . . . . . 10  |-  ( ( x  =  A  /\  z  =  N )  ->  ( z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
1918opelopabga 4248 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
2011, 12, 19syl2anc 409 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
215, 20mpbird 166 . . . . . . 7  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e. 
{ <. x ,  z
>.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } } )
22 mptv 4086 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }
2321, 22eleqtrrdi 2264 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e.  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
24 opeldmg 4816 . . . . . . 7  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2511, 12, 24syl2anc 409 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2623, 25mpd 13 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )
27 fvco 5566 . . . . 5  |-  ( ( Fun  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
283, 26, 27sylancr 412 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
292, 28eqtrid 2215 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
3011elexd 2743 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  _V )
314, 12eqeltrd 2247 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )
3214rabbidv 2719 . . . . . . . 8  |-  ( x  =  A  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3332unieqd 3807 . . . . . . 7  |-  ( x  =  A  ->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
34 eqid 2170 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
3533, 34fvmptg 5572 . . . . . 6  |-  ( ( A  e.  _V  /\  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )  ->  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
)  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
3630, 31, 35syl2anc 409 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3736, 4eqtrd 2203 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  N )
3837fveq2d 5500 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
3929, 38eqtrd 2203 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
40 ordom 4591 . . . . . . 7  |-  Ord  om
41 ordirr 4526 . . . . . . 7  |-  ( Ord 
om  ->  -.  om  e.  om )
4240, 41ax-mp 5 . . . . . 6  |-  -.  om  e.  om
43 eleq1 2233 . . . . . 6  |-  ( om  =  N  ->  ( om  e.  om  <->  N  e.  om ) )
4442, 43mtbii 669 . . . . 5  |-  ( om  =  N  ->  -.  N  e.  om )
4544necon2ai 2394 . . . 4  |-  ( N  e.  om  ->  om  =/=  N )
46 fvunsng 5690 . . . 4  |-  ( ( N  e.  om  /\  om  =/=  N )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4745, 46mpdan 419 . . 3  |-  ( N  e.  om  ->  (
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } ) `  N
)  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  N ) )
4847adantr 274 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4939, 48eqtrd 2203 1  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141    =/= wne 2340   {crab 2452   _Vcvv 2730    u. cun 3119   {csn 3583   <.cop 3586   U.cuni 3796   class class class wbr 3989   {copab 4049    |-> cmpt 4050   Ord word 4347   omcom 4574   dom cdm 4611    o. ccom 4615   Fun wfun 5192   ` cfv 5198  (class class class)co 5853  freccfrec 6369    ~~ cen 6716    ~<_ cdom 6717   Fincfn 6718   0cc0 7774   1c1 7775    + caddc 7777   +oocpnf 7951   ZZcz 9212  ♯chash 10709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721  df-ihash 10710
This theorem is referenced by:  hashcl  10715  hashfz1  10717  hashen  10718  fihashdom  10738  hashun  10740
  Copyright terms: Public domain W3C validator