| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashennn | Unicode version | ||
| Description: The size of a set
equinumerous to an element of |
| Ref | Expression |
|---|---|
| hashennn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ihash 10921 |
. . . . 5
| |
| 2 | 1 | fveq1i 5577 |
. . . 4
|
| 3 | funmpt 5309 |
. . . . 5
| |
| 4 | hashennnuni 10924 |
. . . . . . . . 9
| |
| 5 | 4 | eqcomd 2211 |
. . . . . . . 8
|
| 6 | nnfi 6969 |
. . . . . . . . . . 11
| |
| 7 | 6 | adantr 276 |
. . . . . . . . . 10
|
| 8 | simpr 110 |
. . . . . . . . . . 11
| |
| 9 | 8 | ensymd 6875 |
. . . . . . . . . 10
|
| 10 | enfii 6971 |
. . . . . . . . . 10
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . . . . . . . 9
|
| 12 | simpl 109 |
. . . . . . . . 9
| |
| 13 | simpr 110 |
. . . . . . . . . . 11
| |
| 14 | breq2 4048 |
. . . . . . . . . . . . . 14
| |
| 15 | 14 | adantr 276 |
. . . . . . . . . . . . 13
|
| 16 | 15 | rabbidv 2761 |
. . . . . . . . . . . 12
|
| 17 | 16 | unieqd 3861 |
. . . . . . . . . . 11
|
| 18 | 13, 17 | eqeq12d 2220 |
. . . . . . . . . 10
|
| 19 | 18 | opelopabga 4309 |
. . . . . . . . 9
|
| 20 | 11, 12, 19 | syl2anc 411 |
. . . . . . . 8
|
| 21 | 5, 20 | mpbird 167 |
. . . . . . 7
|
| 22 | mptv 4141 |
. . . . . . 7
| |
| 23 | 21, 22 | eleqtrrdi 2299 |
. . . . . 6
|
| 24 | opeldmg 4883 |
. . . . . . 7
| |
| 25 | 11, 12, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | 23, 25 | mpd 13 |
. . . . 5
|
| 27 | fvco 5649 |
. . . . 5
| |
| 28 | 3, 26, 27 | sylancr 414 |
. . . 4
|
| 29 | 2, 28 | eqtrid 2250 |
. . 3
|
| 30 | 11 | elexd 2785 |
. . . . . 6
|
| 31 | 4, 12 | eqeltrd 2282 |
. . . . . 6
|
| 32 | 14 | rabbidv 2761 |
. . . . . . . 8
|
| 33 | 32 | unieqd 3861 |
. . . . . . 7
|
| 34 | eqid 2205 |
. . . . . . 7
| |
| 35 | 33, 34 | fvmptg 5655 |
. . . . . 6
|
| 36 | 30, 31, 35 | syl2anc 411 |
. . . . 5
|
| 37 | 36, 4 | eqtrd 2238 |
. . . 4
|
| 38 | 37 | fveq2d 5580 |
. . 3
|
| 39 | 29, 38 | eqtrd 2238 |
. 2
|
| 40 | ordom 4655 |
. . . . . . 7
| |
| 41 | ordirr 4590 |
. . . . . . 7
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . . 6
|
| 43 | eleq1 2268 |
. . . . . 6
| |
| 44 | 42, 43 | mtbii 676 |
. . . . 5
|
| 45 | 44 | necon2ai 2430 |
. . . 4
|
| 46 | fvunsng 5778 |
. . . 4
| |
| 47 | 45, 46 | mpdan 421 |
. . 3
|
| 48 | 47 | adantr 276 |
. 2
|
| 49 | 39, 48 | eqtrd 2238 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-ihash 10921 |
| This theorem is referenced by: hashcl 10926 hashfz1 10928 hashen 10929 fihashdom 10948 hashun 10950 |
| Copyright terms: Public domain | W3C validator |