ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennn Unicode version

Theorem hashennn 10851
Description: The size of a set equinumerous to an element of  om. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashennn  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Distinct variable groups:    x, A    x, N

Proof of Theorem hashennn
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10847 . . . . 5  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
21fveq1i 5555 . . . 4  |-  ( `  A
)  =  ( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )
3 funmpt 5292 . . . . 5  |-  Fun  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
4 hashennnuni 10850 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
54eqcomd 2199 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
6 nnfi 6928 . . . . . . . . . . 11  |-  ( N  e.  om  ->  N  e.  Fin )
76adantr 276 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  Fin )
8 simpr 110 . . . . . . . . . . 11  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  ~~  A )
98ensymd 6837 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  ~~  N )
10 enfii 6930 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  A  ~~  N )  ->  A  e.  Fin )
117, 9, 10syl2anc 411 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  Fin )
12 simpl 109 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  om )
13 simpr 110 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  z  =  N )
14 breq2 4033 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
y  ~<_  x  <->  y  ~<_  A ) )
1514adantr 276 . . . . . . . . . . . . 13  |-  ( ( x  =  A  /\  z  =  N )  ->  ( y  ~<_  x  <->  y  ~<_  A ) )
1615rabbidv 2749 . . . . . . . . . . . 12  |-  ( ( x  =  A  /\  z  =  N )  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
1716unieqd 3846 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1813, 17eqeq12d 2208 . . . . . . . . . 10  |-  ( ( x  =  A  /\  z  =  N )  ->  ( z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
1918opelopabga 4293 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
2011, 12, 19syl2anc 411 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
215, 20mpbird 167 . . . . . . 7  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e. 
{ <. x ,  z
>.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } } )
22 mptv 4126 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }
2321, 22eleqtrrdi 2287 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e.  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
24 opeldmg 4867 . . . . . . 7  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2511, 12, 24syl2anc 411 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2623, 25mpd 13 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )
27 fvco 5627 . . . . 5  |-  ( ( Fun  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
283, 26, 27sylancr 414 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
292, 28eqtrid 2238 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
3011elexd 2773 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  _V )
314, 12eqeltrd 2270 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )
3214rabbidv 2749 . . . . . . . 8  |-  ( x  =  A  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3332unieqd 3846 . . . . . . 7  |-  ( x  =  A  ->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
34 eqid 2193 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
3533, 34fvmptg 5633 . . . . . 6  |-  ( ( A  e.  _V  /\  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )  ->  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
)  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
3630, 31, 35syl2anc 411 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3736, 4eqtrd 2226 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  N )
3837fveq2d 5558 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
3929, 38eqtrd 2226 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
40 ordom 4639 . . . . . . 7  |-  Ord  om
41 ordirr 4574 . . . . . . 7  |-  ( Ord 
om  ->  -.  om  e.  om )
4240, 41ax-mp 5 . . . . . 6  |-  -.  om  e.  om
43 eleq1 2256 . . . . . 6  |-  ( om  =  N  ->  ( om  e.  om  <->  N  e.  om ) )
4442, 43mtbii 675 . . . . 5  |-  ( om  =  N  ->  -.  N  e.  om )
4544necon2ai 2418 . . . 4  |-  ( N  e.  om  ->  om  =/=  N )
46 fvunsng 5752 . . . 4  |-  ( ( N  e.  om  /\  om  =/=  N )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4745, 46mpdan 421 . . 3  |-  ( N  e.  om  ->  (
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } ) `  N
)  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  N ) )
4847adantr 276 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4939, 48eqtrd 2226 1  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164    =/= wne 2364   {crab 2476   _Vcvv 2760    u. cun 3151   {csn 3618   <.cop 3621   U.cuni 3835   class class class wbr 4029   {copab 4089    |-> cmpt 4090   Ord word 4393   omcom 4622   dom cdm 4659    o. ccom 4663   Fun wfun 5248   ` cfv 5254  (class class class)co 5918  freccfrec 6443    ~~ cen 6792    ~<_ cdom 6793   Fincfn 6794   0cc0 7872   1c1 7873    + caddc 7875   +oocpnf 8051   ZZcz 9317  ♯chash 10846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-ihash 10847
This theorem is referenced by:  hashcl  10852  hashfz1  10854  hashen  10855  fihashdom  10874  hashun  10876
  Copyright terms: Public domain W3C validator