| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashennn | Unicode version | ||
| Description: The size of a set
equinumerous to an element of |
| Ref | Expression |
|---|---|
| hashennn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ihash 10998 |
. . . . 5
| |
| 2 | 1 | fveq1i 5628 |
. . . 4
|
| 3 | funmpt 5356 |
. . . . 5
| |
| 4 | hashennnuni 11001 |
. . . . . . . . 9
| |
| 5 | 4 | eqcomd 2235 |
. . . . . . . 8
|
| 6 | nnfi 7034 |
. . . . . . . . . . 11
| |
| 7 | 6 | adantr 276 |
. . . . . . . . . 10
|
| 8 | simpr 110 |
. . . . . . . . . . 11
| |
| 9 | 8 | ensymd 6935 |
. . . . . . . . . 10
|
| 10 | enfii 7036 |
. . . . . . . . . 10
| |
| 11 | 7, 9, 10 | syl2anc 411 |
. . . . . . . . 9
|
| 12 | simpl 109 |
. . . . . . . . 9
| |
| 13 | simpr 110 |
. . . . . . . . . . 11
| |
| 14 | breq2 4087 |
. . . . . . . . . . . . . 14
| |
| 15 | 14 | adantr 276 |
. . . . . . . . . . . . 13
|
| 16 | 15 | rabbidv 2788 |
. . . . . . . . . . . 12
|
| 17 | 16 | unieqd 3899 |
. . . . . . . . . . 11
|
| 18 | 13, 17 | eqeq12d 2244 |
. . . . . . . . . 10
|
| 19 | 18 | opelopabga 4351 |
. . . . . . . . 9
|
| 20 | 11, 12, 19 | syl2anc 411 |
. . . . . . . 8
|
| 21 | 5, 20 | mpbird 167 |
. . . . . . 7
|
| 22 | mptv 4181 |
. . . . . . 7
| |
| 23 | 21, 22 | eleqtrrdi 2323 |
. . . . . 6
|
| 24 | opeldmg 4928 |
. . . . . . 7
| |
| 25 | 11, 12, 24 | syl2anc 411 |
. . . . . 6
|
| 26 | 23, 25 | mpd 13 |
. . . . 5
|
| 27 | fvco 5704 |
. . . . 5
| |
| 28 | 3, 26, 27 | sylancr 414 |
. . . 4
|
| 29 | 2, 28 | eqtrid 2274 |
. . 3
|
| 30 | 11 | elexd 2813 |
. . . . . 6
|
| 31 | 4, 12 | eqeltrd 2306 |
. . . . . 6
|
| 32 | 14 | rabbidv 2788 |
. . . . . . . 8
|
| 33 | 32 | unieqd 3899 |
. . . . . . 7
|
| 34 | eqid 2229 |
. . . . . . 7
| |
| 35 | 33, 34 | fvmptg 5710 |
. . . . . 6
|
| 36 | 30, 31, 35 | syl2anc 411 |
. . . . 5
|
| 37 | 36, 4 | eqtrd 2262 |
. . . 4
|
| 38 | 37 | fveq2d 5631 |
. . 3
|
| 39 | 29, 38 | eqtrd 2262 |
. 2
|
| 40 | ordom 4699 |
. . . . . . 7
| |
| 41 | ordirr 4634 |
. . . . . . 7
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . . 6
|
| 43 | eleq1 2292 |
. . . . . 6
| |
| 44 | 42, 43 | mtbii 678 |
. . . . 5
|
| 45 | 44 | necon2ai 2454 |
. . . 4
|
| 46 | fvunsng 5833 |
. . . 4
| |
| 47 | 45, 46 | mpdan 421 |
. . 3
|
| 48 | 47 | adantr 276 |
. 2
|
| 49 | 39, 48 | eqtrd 2262 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-ihash 10998 |
| This theorem is referenced by: hashcl 11003 hashfz1 11005 hashen 11006 fihashdom 11025 hashun 11027 |
| Copyright terms: Public domain | W3C validator |