ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashennn Unicode version

Theorem hashennn 10021
Description: The size of a set equinumerous to an element of  om. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashennn  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Distinct variable groups:    x, A    x, N

Proof of Theorem hashennn
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ihash 10017 . . . . 5  |- =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
21fveq1i 5252 . . . 4  |-  ( `  A
)  =  ( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } )  o.  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )
3 funmpt 5003 . . . . 5  |-  Fun  (
x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
4 hashennnuni 10020 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  N )
54eqcomd 2088 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
6 nnfi 6516 . . . . . . . . . . 11  |-  ( N  e.  om  ->  N  e.  Fin )
76adantr 270 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  Fin )
8 simpr 108 . . . . . . . . . . 11  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  ~~  A )
98ensymd 6428 . . . . . . . . . 10  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  ~~  N )
10 enfii 6518 . . . . . . . . . 10  |-  ( ( N  e.  Fin  /\  A  ~~  N )  ->  A  e.  Fin )
117, 9, 10syl2anc 403 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  Fin )
12 simpl 107 . . . . . . . . 9  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  N  e.  om )
13 simpr 108 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  z  =  N )
14 breq2 3815 . . . . . . . . . . . . . 14  |-  ( x  =  A  ->  (
y  ~<_  x  <->  y  ~<_  A ) )
1514adantr 270 . . . . . . . . . . . . 13  |-  ( ( x  =  A  /\  z  =  N )  ->  ( y  ~<_  x  <->  y  ~<_  A ) )
1615rabbidv 2601 . . . . . . . . . . . 12  |-  ( ( x  =  A  /\  z  =  N )  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
1716unieqd 3638 . . . . . . . . . . 11  |-  ( ( x  =  A  /\  z  =  N )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
1813, 17eqeq12d 2097 . . . . . . . . . 10  |-  ( ( x  =  A  /\  z  =  N )  ->  ( z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
1918opelopabga 4053 . . . . . . . . 9  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
2011, 12, 19syl2anc 403 . . . . . . . 8  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }  <->  N  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } ) )
215, 20mpbird 165 . . . . . . 7  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e. 
{ <. x ,  z
>.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } } )
22 mptv 3900 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  { <. x ,  z >.  |  z  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } }
2321, 22syl6eleqr 2176 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  <. A ,  N >.  e.  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) )
24 opeldmg 4597 . . . . . . 7  |-  ( ( A  e.  Fin  /\  N  e.  om )  ->  ( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2511, 12, 24syl2anc 403 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( <. A ,  N >.  e.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) ) )
2623, 25mpd 13 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )
27 fvco 5317 . . . . 5  |-  ( ( Fun  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )  /\  A  e.  dom  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
283, 26, 27sylancr 405 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 )  u.  { <. om , +oo >. } )  o.  ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) ) `
 A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
292, 28syl5eq 2127 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) ) )
3011elexd 2623 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  A  e.  _V )
314, 12eqeltrd 2159 . . . . . 6  |-  ( ( N  e.  om  /\  N  ~~  A )  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )
3214rabbidv 2601 . . . . . . . 8  |-  ( x  =  A  ->  { y  e.  ( om  u.  { om } )  |  y  ~<_  x }  =  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3332unieqd 3638 . . . . . . 7  |-  ( x  =  A  ->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x }  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
34 eqid 2083 . . . . . . 7  |-  ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } )  =  ( x  e.  _V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } )
3533, 34fvmptg 5323 . . . . . 6  |-  ( ( A  e.  _V  /\  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  e.  om )  ->  ( ( x  e.  _V  |->  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  x } ) `  A
)  =  U. {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
3630, 31, 35syl2anc 403 . . . . 5  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
3736, 4eqtrd 2115 . . . 4  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A )  =  N )
3837fveq2d 5255 . . 3  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  ( ( x  e. 
_V  |->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  x } ) `  A ) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
3929, 38eqtrd 2115 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N ) )
40 ordom 4383 . . . . . . 7  |-  Ord  om
41 ordirr 4320 . . . . . . 7  |-  ( Ord 
om  ->  -.  om  e.  om )
4240, 41ax-mp 7 . . . . . 6  |-  -.  om  e.  om
43 eleq1 2145 . . . . . 6  |-  ( om  =  N  ->  ( om  e.  om  <->  N  e.  om ) )
4442, 43mtbii 632 . . . . 5  |-  ( om  =  N  ->  -.  N  e.  om )
4544necon2ai 2303 . . . 4  |-  ( N  e.  om  ->  om  =/=  N )
46 fvunsng 5431 . . . 4  |-  ( ( N  e.  om  /\  om  =/=  N )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4745, 46mpdan 412 . . 3  |-  ( N  e.  om  ->  (
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u. 
{ <. om , +oo >. } ) `  N
)  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1
) ) ,  0 ) `  N ) )
4847adantr 270 . 2  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  u.  { <. om , +oo >. } ) `  N )  =  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  N
) )
4939, 48eqtrd 2115 1  |-  ( ( N  e.  om  /\  N  ~~  A )  -> 
( `  A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  N ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434    =/= wne 2249   {crab 2357   _Vcvv 2612    u. cun 2982   {csn 3422   <.cop 3425   U.cuni 3627   class class class wbr 3811   {copab 3864    |-> cmpt 3865   Ord word 4152   omcom 4367   dom cdm 4399    o. ccom 4403   Fun wfun 4961   ` cfv 4967  (class class class)co 5589  freccfrec 6085    ~~ cen 6383    ~<_ cdom 6384   Fincfn 6385   0cc0 7251   1c1 7252    + caddc 7254   +oocpnf 7420   ZZcz 8644  ♯chash 10016
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-nul 3930  ax-pow 3974  ax-pr 3999  ax-un 4223  ax-setind 4315  ax-iinf 4365
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-nul 3270  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-int 3663  df-br 3812  df-opab 3866  df-mpt 3867  df-tr 3902  df-id 4083  df-iord 4156  df-on 4158  df-suc 4161  df-iom 4368  df-xp 4405  df-rel 4406  df-cnv 4407  df-co 4408  df-dm 4409  df-rn 4410  df-res 4411  df-ima 4412  df-iota 4932  df-fun 4969  df-fn 4970  df-f 4971  df-f1 4972  df-fo 4973  df-f1o 4974  df-fv 4975  df-er 6220  df-en 6386  df-dom 6387  df-fin 6388  df-ihash 10017
This theorem is referenced by:  hashcl  10022  hashfz1  10024  hashen  10025  fihashdom  10044  hashun  10046
  Copyright terms: Public domain W3C validator