ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-lt Unicode version

Definition df-lt 7766
Description: Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
df-lt  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
Distinct variable group:    x, y, z, w

Detailed syntax breakdown of Definition df-lt
StepHypRef Expression
1 cltrr 7757 . 2  class  <RR
2 vx . . . . . . 7  setvar  x
32cv 1342 . . . . . 6  class  x
4 cr 7752 . . . . . 6  class  RR
53, 4wcel 2136 . . . . 5  wff  x  e.  RR
6 vy . . . . . . 7  setvar  y
76cv 1342 . . . . . 6  class  y
87, 4wcel 2136 . . . . 5  wff  y  e.  RR
95, 8wa 103 . . . 4  wff  ( x  e.  RR  /\  y  e.  RR )
10 vz . . . . . . . . . . 11  setvar  z
1110cv 1342 . . . . . . . . . 10  class  z
12 c0r 7239 . . . . . . . . . 10  class  0R
1311, 12cop 3579 . . . . . . . . 9  class  <. z ,  0R >.
143, 13wceq 1343 . . . . . . . 8  wff  x  = 
<. z ,  0R >.
15 vw . . . . . . . . . . 11  setvar  w
1615cv 1342 . . . . . . . . . 10  class  w
1716, 12cop 3579 . . . . . . . . 9  class  <. w ,  0R >.
187, 17wceq 1343 . . . . . . . 8  wff  y  = 
<. w ,  0R >.
1914, 18wa 103 . . . . . . 7  wff  ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )
20 cltr 7244 . . . . . . . 8  class  <R
2111, 16, 20wbr 3982 . . . . . . 7  wff  z  <R  w
2219, 21wa 103 . . . . . 6  wff  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )
2322, 15wex 1480 . . . . 5  wff  E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )
2423, 10wex 1480 . . . 4  wff  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )
259, 24wa 103 . . 3  wff  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )
2625, 2, 6copab 4042 . 2  class  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
271, 26wceq 1343 1  wff  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
Colors of variables: wff set class
This definition is referenced by:  ltrelre  7774  ltresr  7780
  Copyright terms: Public domain W3C validator