ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelcn Unicode version

Theorem opelcn 7855
Description: Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
opelcn  |-  ( <. A ,  B >.  e.  CC  <->  ( A  e. 
R.  /\  B  e.  R. ) )

Proof of Theorem opelcn
StepHypRef Expression
1 df-c 7847 . . 3  |-  CC  =  ( R.  X.  R. )
21eleq2i 2256 . 2  |-  ( <. A ,  B >.  e.  CC  <->  <. A ,  B >.  e.  ( R.  X.  R. ) )
3 opelxp 4674 . 2  |-  ( <. A ,  B >.  e.  ( R.  X.  R. ) 
<->  ( A  e.  R.  /\  B  e.  R. )
)
42, 3bitri 184 1  |-  ( <. A ,  B >.  e.  CC  <->  ( A  e. 
R.  /\  B  e.  R. ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    e. wcel 2160   <.cop 3610    X. cxp 4642   R.cnr 7326   CCcc 7839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ral 2473  df-rex 2474  df-v 2754  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-opab 4080  df-xp 4650  df-c 7847
This theorem is referenced by:  axicn  7892
  Copyright terms: Public domain W3C validator