ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  opelcn Unicode version

Theorem opelcn 7425
Description: Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.)
Assertion
Ref Expression
opelcn  |-  ( <. A ,  B >.  e.  CC  <->  ( A  e. 
R.  /\  B  e.  R. ) )

Proof of Theorem opelcn
StepHypRef Expression
1 df-c 7417 . . 3  |-  CC  =  ( R.  X.  R. )
21eleq2i 2155 . 2  |-  ( <. A ,  B >.  e.  CC  <->  <. A ,  B >.  e.  ( R.  X.  R. ) )
3 opelxp 4481 . 2  |-  ( <. A ,  B >.  e.  ( R.  X.  R. ) 
<->  ( A  e.  R.  /\  B  e.  R. )
)
42, 3bitri 183 1  |-  ( <. A ,  B >.  e.  CC  <->  ( A  e. 
R.  /\  B  e.  R. ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    e. wcel 1439   <.cop 3453    X. cxp 4450   R.cnr 6917   CCcc 7409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-nf 1396  df-sb 1694  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ral 2365  df-rex 2366  df-v 2622  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-opab 3906  df-xp 4458  df-c 7417
This theorem is referenced by:  axicn  7461
  Copyright terms: Public domain W3C validator