HomeHome Intuitionistic Logic Explorer
Theorem List (p. 79 of 165)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7801-7900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremltaprlem 7801 Lemma for Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by NM, 8-Apr-1996.)
 |-  ( C  e.  P.  ->  ( A  <P  B  ->  ( C  +P.  A ) 
 <P  ( C  +P.  B ) ) )
 
Theoremltaprg 7802 Ordering property of addition. Proposition 9-3.5(v) of [Gleason] p. 123. (Contributed by Jim Kingdon, 26-Dec-2019.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( A  <P  B  <->  ( C  +P.  A )  <P  ( C  +P.  B ) ) )
 
Theoremprplnqu 7803* Membership in the upper cut of a sum of a positive real and a fraction. (Contributed by Jim Kingdon, 16-Jun-2021.)
 |-  ( ph  ->  X  e.  P. )   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  A  e.  ( 2nd `  ( X  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) ) )   =>    |-  ( ph  ->  E. y  e.  ( 2nd `  X ) ( y  +Q  Q )  =  A )
 
Theoremaddextpr 7804 Strong extensionality of addition (ordering version). This is similar to addext 8753 but for positive reals and based on less-than rather than apartness. (Contributed by Jim Kingdon, 17-Feb-2020.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( ( A  +P.  B )  <P  ( C  +P.  D )  ->  ( A  <P  C  \/  B  <P  D ) ) )
 
Theoremrecexprlemell 7805* Membership in the lower cut of  B. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( C  e.  ( 1st `  B )  <->  E. y ( C 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) )
 
Theoremrecexprlemelu 7806* Membership in the upper cut of  B. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( C  e.  ( 2nd `  B )  <->  E. y ( y 
 <Q  C  /\  ( *Q `  y )  e.  ( 1st `  A ) ) )
 
Theoremrecexprlemm 7807*  B is inhabited. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( E. q  e. 
 Q.  q  e.  ( 1st `  B )  /\  E. r  e.  Q.  r  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemopl 7808* The lower cut of  B is open. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  q  e.  Q.  /\  q  e.  ( 1st `  B ) )  ->  E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) )
 
Theoremrecexprlemlol 7809* The lower cut of  B is lower. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  q  e.  Q. )  ->  ( E. r  e.  Q.  ( q  <Q  r 
 /\  r  e.  ( 1st `  B ) ) 
 ->  q  e.  ( 1st `  B ) ) )
 
Theoremrecexprlemopu 7810* The upper cut of  B is open. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  r  e.  Q.  /\  r  e.  ( 2nd `  B ) )  ->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemupu 7811* The upper cut of  B is upper. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 28-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( ( A  e.  P. 
 /\  r  e.  Q. )  ->  ( E. q  e.  Q.  ( q  <Q  r 
 /\  q  e.  ( 2nd `  B ) ) 
 ->  r  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemrnd 7812*  B is rounded. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( A. q  e. 
 Q.  ( q  e.  ( 1st `  B ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  ( 1st `  B ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  B )  <->  E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) ) )
 
Theoremrecexprlemdisj 7813*  B is disjoint. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  A. q  e.  Q.  -.  ( q  e.  ( 1st `  B )  /\  q  e.  ( 2nd `  B ) ) )
 
Theoremrecexprlemloc 7814*  B is located. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  A. q  e.  Q.  A. r  e.  Q.  (
 q  <Q  r  ->  (
 q  e.  ( 1st `  B )  \/  r  e.  ( 2nd `  B ) ) ) )
 
Theoremrecexprlempr 7815*  B is a positive real. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  B  e.  P. )
 
Theoremrecexprlem1ssl 7816* The lower cut of one is a subset of the lower cut of  A  .P.  B. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 1st `  1P )  C_  ( 1st `  ( A  .P.  B ) ) )
 
Theoremrecexprlem1ssu 7817* The upper cut of one is a subset of the upper cut of  A  .P.  B. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 2nd `  1P )  C_  ( 2nd `  ( A  .P.  B ) ) )
 
Theoremrecexprlemss1l 7818* The lower cut of  A  .P.  B is a subset of the lower cut of one. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 1st `  ( A  .P.  B ) ) 
 C_  ( 1st `  1P ) )
 
Theoremrecexprlemss1u 7819* The upper cut of  A  .P.  B is a subset of the upper cut of one. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( 2nd `  ( A  .P.  B ) ) 
 C_  ( 2nd `  1P ) )
 
Theoremrecexprlemex 7820*  B is the reciprocal of  A. Lemma for recexpr 7821. (Contributed by Jim Kingdon, 27-Dec-2019.)
 |-  B  =  <. { x  |  E. y ( x 
 <Q  y  /\  ( *Q `  y )  e.  ( 2nd `  A ) ) } ,  { x  |  E. y ( y 
 <Q  x  /\  ( *Q `  y )  e.  ( 1st `  A ) ) } >.   =>    |-  ( A  e.  P.  ->  ( A  .P.  B )  =  1P )
 
Theoremrecexpr 7821* The reciprocal of a positive real exists. Part of Proposition 9-3.7(v) of [Gleason] p. 124. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
 |-  ( A  e.  P.  ->  E. x  e.  P.  ( A  .P.  x )  =  1P )
 
Theoremaptiprleml 7822 Lemma for aptipr 7824. (Contributed by Jim Kingdon, 28-Jan-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\ 
 -.  B  <P  A ) 
 ->  ( 1st `  A )  C_  ( 1st `  B ) )
 
Theoremaptiprlemu 7823 Lemma for aptipr 7824. (Contributed by Jim Kingdon, 28-Jan-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\ 
 -.  B  <P  A ) 
 ->  ( 2nd `  B )  C_  ( 2nd `  A ) )
 
Theoremaptipr 7824 Apartness of positive reals is tight. (Contributed by Jim Kingdon, 28-Jan-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\ 
 -.  ( A  <P  B  \/  B  <P  A ) )  ->  A  =  B )
 
Theoremltmprr 7825 Ordering property of multiplication. (Contributed by Jim Kingdon, 18-Feb-2020.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  P. )  ->  ( ( C  .P.  A )  <P  ( C  .P.  B )  ->  A  <P  B ) )
 
Theoremarchpr 7826* For any positive real, there is an integer that is greater than it. This is also known as the "archimedean property". The integer  x is embedded into the reals as described at nnprlu 7736. (Contributed by Jim Kingdon, 22-Apr-2020.)
 |-  ( A  e.  P.  ->  E. x  e.  N.  A  <P  <. { l  |  l  <Q  [ <. x ,  1o >. ]  ~Q  } ,  { u  |  [ <. x ,  1o >. ] 
 ~Q  <Q  u } >. )
 
Theoremcaucvgprlemcanl 7827* Lemma for cauappcvgprlemladdrl 7840. Cancelling a term from both sides. (Contributed by Jim Kingdon, 15-Aug-2020.)
 |-  ( ph  ->  L  e.  P. )   &    |-  ( ph  ->  S  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   &    |-  ( ph  ->  Q  e.  Q. )   =>    |-  ( ph  ->  (
 ( R  +Q  Q )  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  ( S  +Q  Q ) } ,  { u  |  ( S  +Q  Q ) 
 <Q  u } >. ) )  <->  R  e.  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) ) )
 
Theoremcauappcvgprlemm 7828* Lemma for cauappcvgpr 7845. The putative limit is inhabited. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemopl 7829* Lemma for cauappcvgpr 7845. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
 
Theoremcauappcvgprlemlol 7830* Lemma for cauappcvgpr 7845. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcauappcvgprlemopu 7831* Lemma for cauappcvgpr 7845. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemupu 7832* Lemma for cauappcvgpr 7845. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 4-Aug-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
 
Theoremcauappcvgprlemrnd 7833* Lemma for cauappcvgpr 7845. The putative limit is rounded. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  (
 A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcauappcvgprlemdisj 7834* Lemma for cauappcvgpr 7845. The putative limit is disjoint. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcauappcvgprlemloc 7835* Lemma for cauappcvgpr 7845. The putative limit is located. (Contributed by Jim Kingdon, 18-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
 s  <Q  r  ->  (
 s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
 
Theoremcauappcvgprlemcl 7836* Lemma for cauappcvgpr 7845. The putative limit is a positive real. (Contributed by Jim Kingdon, 20-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcauappcvgprlemladdfu 7837* Lemma for cauappcvgprlemladd 7841. The forward subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  ( 2nd `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. ) )
 
Theoremcauappcvgprlemladdfl 7838* Lemma for cauappcvgprlemladd 7841. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  ( 1st `  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. ) )
 
Theoremcauappcvgprlemladdru 7839* Lemma for cauappcvgprlemladd 7841. The reverse subset relationship for the upper cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  <. { l  e. 
 Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )  C_  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcauappcvgprlemladdrl 7840* Lemma for cauappcvgprlemladd 7841. The forward subset relationship for the lower cut. (Contributed by Jim Kingdon, 11-Jul-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 1st `  <. { l  e. 
 Q.  |  E. q  e.  Q.  ( l  +Q  q )  <Q  ( ( F `  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcauappcvgprlemladd 7841* Lemma for cauappcvgpr 7845. This takes  L and offsets it by the positive fraction  S. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. )  = 
 <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( ( F `
  q )  +Q  S ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( ( F `
  q )  +Q  q )  +Q  S ) 
 <Q  u } >. )
 
Theoremcauappcvgprlem1 7842* Lemma for cauappcvgpr 7845. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( F `
  Q ) } ,  { u  |  ( F `  Q ) 
 <Q  u } >.  <P  ( L 
 +P.  <. { l  |  l  <Q  ( Q  +Q  R ) } ,  { u  |  ( Q  +Q  R )  <Q  u } >. ) )
 
Theoremcauappcvgprlem2 7843* Lemma for cauappcvgpr 7845. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 23-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  R  e.  Q. )   =>    |-  ( ph  ->  L  <P 
 <. { l  |  l 
 <Q  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) } ,  { u  |  ( ( F `  Q )  +Q  ( Q  +Q  R ) ) 
 <Q  u } >. )
 
Theoremcauappcvgprlemlim 7844* Lemma for cauappcvgpr 7845. The putative limit is a limit. (Contributed by Jim Kingdon, 20-Jun-2020.)
 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   &    |-  L  =  <. { l  e.  Q.  |  E. q  e.  Q.  ( l  +Q  q
 )  <Q  ( F `  q ) } ,  { u  e.  Q.  |  E. q  e.  Q.  ( ( F `  q )  +Q  q
 )  <Q  u } >.   =>    |-  ( ph  ->  A. q  e.  Q.  A. r  e.  Q.  ( <. { l  |  l 
 <Q  ( F `  q
 ) } ,  { u  |  ( F `  q )  <Q  u } >. 
 <P  ( L  +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  ( q  +Q  r ) 
 <Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  r
 ) ) } ,  { u  |  (
 ( F `  q
 )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
 
Theoremcauappcvgpr 7845* A Cauchy approximation has a limit. A Cauchy approximation, here  F, is similar to a Cauchy sequence but is indexed by the desired tolerance (that is, how close together terms needs to be) rather than by natural numbers. This is basically Theorem 11.2.12 of [HoTT], p. (varies) with a few differences such as that we are proving the existence of a limit without anything about how fast it converges (that is, mere existence instead of existence, in HoTT terms), and that the codomain of  F is  Q. rather than  P.. We also specify that every term needs to be larger than a fraction  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of caucvgpr 7865 and caucvgprpr 7895 but is somewhat simpler, so reading this one first may help understanding the other two.

(Contributed by Jim Kingdon, 19-Jun-2020.)

 |-  ( ph  ->  F : Q. --> Q. )   &    |-  ( ph  ->  A. p  e.  Q.  A. q  e.  Q.  (
 ( F `  p )  <Q  ( ( F `
  q )  +Q  ( p  +Q  q
 ) )  /\  ( F `  q )  <Q  ( ( F `  p )  +Q  ( p  +Q  q ) ) ) )   &    |-  ( ph  ->  A. p  e.  Q.  A  <Q  ( F `  p ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. q  e. 
 Q.  A. r  e.  Q.  ( <. { l  |  l  <Q  ( F `  q ) } ,  { u  |  ( F `  q )  <Q  u } >.  <P  ( y 
 +P.  <. { l  |  l  <Q  ( q  +Q  r ) } ,  { u  |  (
 q  +Q  r )  <Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  ( ( F `  q )  +Q  ( q  +Q  r
 ) ) } ,  { u  |  (
 ( F `  q
 )  +Q  ( q  +Q  r ) )  <Q  u } >. ) )
 
Theoremarchrecnq 7846* Archimedean principle for fractions (reciprocal version). (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( A  e.  Q.  ->  E. j  e.  N.  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  A )
 
Theoremarchrecpr 7847* Archimedean principle for positive reals (reciprocal version). (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( A  e.  P.  ->  E. j  e.  N.  <. { l  |  l  <Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. j ,  1o >. ]  ~Q  )  <Q  u } >.  <P  A )
 
Theoremcaucvgprlemk 7848 Lemma for caucvgpr 7865. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 9-Oct-2020.)
 |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  Q )
 
Theoremcaucvgprlemnkj 7849* Lemma for caucvgpr 7865. Part of disjointness. (Contributed by Jim Kingdon, 23-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  -.  (
 ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 )  <Q  ( F `  K )  /\  ( ( F `  J )  +Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) )  <Q  S ) )
 
Theoremcaucvgprlemnbj 7850* Lemma for caucvgpr 7865. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 18-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  B  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   =>    |-  ( ph  ->  -.  (
 ( ( F `  B )  +Q  ( *Q `  [ <. B ,  1o >. ]  ~Q  )
 )  +Q  ( *Q ` 
 [ <. J ,  1o >. ]  ~Q  ) )  <Q  ( F `  J ) )
 
Theoremcaucvgprlemm 7851* Lemma for caucvgpr 7865. The putative limit is inhabited. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. r  e.  Q.  r  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprlemopl 7852* Lemma for caucvgpr 7865. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) )
 
Theoremcaucvgprlemlol 7853* Lemma for caucvgpr 7865. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  r  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcaucvgprlemopu 7854* Lemma for caucvgpr 7865. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  r  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprlemupu 7855* Lemma for caucvgpr 7865. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 20-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ( ph  /\  s  <Q  r  /\  s  e.  ( 2nd `  L ) )  ->  r  e.  ( 2nd `  L ) )
 
Theoremcaucvgprlemrnd 7856* Lemma for caucvgpr 7865. The putative limit is rounded. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  (
 A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. r  e.  Q.  ( s  <Q  r  /\  r  e.  ( 1st `  L ) ) ) 
 /\  A. r  e.  Q.  ( r  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  r  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcaucvgprlemdisj 7857* Lemma for caucvgpr 7865. The putative limit is disjoint. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprlemloc 7858* Lemma for caucvgpr 7865. The putative limit is located. (Contributed by Jim Kingdon, 27-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. r  e.  Q.  (
 s  <Q  r  ->  (
 s  e.  ( 1st `  L )  \/  r  e.  ( 2nd `  L ) ) ) )
 
Theoremcaucvgprlemcl 7859* Lemma for caucvgpr 7865. The putative limit is a positive real. (Contributed by Jim Kingdon, 26-Sep-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprlemladdfu 7860* Lemma for caucvgpr 7865. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 9-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  ( 2nd `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) )  C_  { u  e.  Q.  |  E. j  e.  N.  ( ( ( F `
  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  +Q  S ) 
 <Q  u } )
 
Theoremcaucvgprlemladdrl 7861* Lemma for caucvgpr 7865. Adding  S after embedding in positive reals, or adding it as a rational. (Contributed by Jim Kingdon, 8-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  ) )  <Q  ( ( F `  j )  +Q  S ) }  C_  ( 1st `  ( L  +P.  <. { l  |  l  <Q  S } ,  { u  |  S  <Q  u } >. ) ) )
 
Theoremcaucvgprlem1 7862* Lemma for caucvgpr 7865. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( F `  K ) } ,  { u  |  ( F `  K )  <Q  u } >.  <P  ( L  +P.  <. { l  |  l  <Q  Q } ,  { u  |  Q  <Q  u } >. ) )
 
Theoremcaucvgprlem2 7863* Lemma for caucvgpr 7865. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 3-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  Q )   =>    |-  ( ph  ->  L 
 <P  <. { l  |  l  <Q  ( ( F `  K )  +Q  Q ) } ,  { u  |  (
 ( F `  K )  +Q  Q )  <Q  u } >. )
 
Theoremcaucvgprlemlim 7864* Lemma for caucvgpr 7865. The putative limit is a limit. (Contributed by Jim Kingdon, 1-Oct-2020.)
 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   &    |-  L  =  <. { l  e.  Q.  |  E. j  e.  N.  ( l  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  ( F `  j ) } ,  { u  e.  Q.  |  E. j  e.  N.  ( ( F `  j )  +Q  ( *Q `  [ <. j ,  1o >. ]  ~Q  )
 )  <Q  u } >.   =>    |-  ( ph  ->  A. x  e.  Q.  E. j  e.  N.  A. k  e.  N.  ( j  <N  k 
 ->  ( <. { l  |  l  <Q  ( F `  k ) } ,  { u  |  ( F `  k )  <Q  u } >.  <P  ( L 
 +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  /\  L  <P  <. { l  |  l  <Q  ( ( F `  k )  +Q  x ) } ,  { u  |  (
 ( F `  k
 )  +Q  x )  <Q  u } >. ) ) )
 
Theoremcaucvgpr 7865* A Cauchy sequence of positive fractions with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a fraction  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This proof (including its lemmas) is similar to the proofs of cauappcvgpr 7845 and caucvgprpr 7895. Reading cauappcvgpr 7845 first (the simplest of the three) might help understanding the other two.

(Contributed by Jim Kingdon, 18-Jun-2020.)

 |-  ( ph  ->  F : N. --> Q. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <Q  ( ( F `
  k )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) )  /\  ( F `
  k )  <Q  ( ( F `  n )  +Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) ) ) ) )   &    |-  ( ph  ->  A. j  e.  N.  A  <Q  ( F `  j
 ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. x  e. 
 Q.  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  ( <. { l  |  l 
 <Q  ( F `  k
 ) } ,  { u  |  ( F `  k )  <Q  u } >. 
 <P  ( y  +P.  <. { l  |  l  <Q  x } ,  { u  |  x  <Q  u } >. )  /\  y  <P  <. { l  |  l  <Q  ( ( F `  k )  +Q  x ) } ,  { u  |  (
 ( F `  k
 )  +Q  x )  <Q  u } >. ) ) )
 
Theoremcaucvgprprlemk 7866* Lemma for caucvgprpr 7895. Reciprocals of positive integers decrease as the positive integers increase. (Contributed by Jim Kingdon, 28-Nov-2020.)
 |-  ( ph  ->  J  <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q ` 
 [ <. K ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. K ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )
 
Theoremcaucvgprprlemloccalc 7867* Lemma for caucvgprpr 7895. Rearranging some expressions for caucvgprprlemloc 7886. (Contributed by Jim Kingdon, 8-Feb-2021.)
 |-  ( ph  ->  S  <Q  T )   &    |-  ( ph  ->  Y  e.  Q. )   &    |-  ( ph  ->  ( S  +Q  Y )  =  T )   &    |-  ( ph  ->  X  e.  Q. )   &    |-  ( ph  ->  ( X  +Q  X ) 
 <Q  Y )   &    |-  ( ph  ->  M  e.  N. )   &    |-  ( ph  ->  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  X )   =>    |-  ( ph  ->  (
 <. { l  |  l 
 <Q  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  )
 ) } ,  { u  |  ( S  +Q  ( *Q `  [ <. M ,  1o >. ]  ~Q  ) )  <Q  u } >.  +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. M ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. M ,  1o >. ]  ~Q  )  <Q  u } >. )  <P  <. { l  |  l  <Q  T } ,  { u  |  T  <Q  u } >. )
 
Theoremcaucvgprprlemell 7868* Lemma for caucvgprpr 7895. Membership in the lower cut of the putative limit. (Contributed by Jim Kingdon, 21-Jan-2021.)
 |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  (
 l  +Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >.  <P  ( F `
  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( X  e.  ( 1st `  L )  <->  ( X  e.  Q. 
 /\  E. b  e.  N.  <. { p  |  p  <Q  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( X  +Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  b
 ) ) )
 
Theoremcaucvgprprlemelu 7869* Lemma for caucvgprpr 7895. Membership in the upper cut of the putative limit. (Contributed by Jim Kingdon, 28-Jan-2021.)
 |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) ) } ,  { q  |  (
 l  +Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >.  <P  ( F `
  r ) } ,  { u  e.  Q.  |  E. r  e.  N.  ( ( F `  r )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( X  e.  ( 2nd `  L )  <->  ( X  e.  Q. 
 /\  E. b  e.  N.  ( ( F `  b )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  X } ,  {
 q  |  X  <Q  q } >. ) )
 
Theoremcaucvgprprlemcbv 7870* Lemma for caucvgprpr 7895. Change bound variables in Cauchy condition. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   =>    |-  ( ph  ->  A. a  e.  N.  A. b  e. 
 N.  ( a  <N  b 
 ->  ( ( F `  a )  <P  ( ( F `  b ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. )  /\  ( F `  b ) 
 <P  ( ( F `  a )  +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. a ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. a ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )
 
Theoremcaucvgprprlemval 7871* Lemma for caucvgprpr 7895. Cauchy condition expressed in terms of classes. (Contributed by Jim Kingdon, 3-Mar-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   =>    |-  ( ( ph  /\  A  <N  B )  ->  (
 ( F `  A )  <P  ( ( F `
  B )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 /\  ( F `  B )  <P  ( ( F `  A ) 
 +P.  <. { p  |  p  <Q  ( *Q `  [ <. A ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. A ,  1o >. ]  ~Q  )  <Q  q } >. ) ) )
 
Theoremcaucvgprprlemnkltj 7872* Lemma for caucvgprpr 7895. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ( ph  /\  K  <N  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnkeqj 7873* Lemma for caucvgprpr 7895. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ( ph  /\  K  =  J )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnjltk 7874* Lemma for caucvgprpr 7895. Part of disjointness. (Contributed by Jim Kingdon, 12-Feb-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ( ph  /\  J  <N  K )  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnkj 7875* Lemma for caucvgprpr 7895. Part of disjointness. (Contributed by Jim Kingdon, 20-Jan-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  K  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   &    |-  ( ph  ->  S  e.  Q. )   =>    |-  ( ph  ->  -.  ( <. { p  |  p  <Q  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( S  +Q  ( *Q `  [ <. K ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  K )  /\  ( ( F `
  J )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 <P  <. { p  |  p  <Q  S } ,  { q  |  S  <Q  q } >. ) )
 
Theoremcaucvgprprlemnbj 7876* Lemma for caucvgprpr 7895. Non-existence of two elements of the sequence which are too far from each other. (Contributed by Jim Kingdon, 17-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  B  e.  N. )   &    |-  ( ph  ->  J  e.  N. )   =>    |-  ( ph  ->  -.  (
 ( ( F `  B )  +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. B ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. B ,  1o >. ]  ~Q  )  <Q  u } >. )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 <P  ( F `  J ) )
 
Theoremcaucvgprprlemml 7877* Lemma for caucvgprpr 7895. The lower cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 1st `  L ) )
 
Theoremcaucvgprprlemmu 7878* Lemma for caucvgprpr 7895. The upper cut of the putative limit is inhabited. (Contributed by Jim Kingdon, 29-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  E. t  e.  Q.  t  e.  ( 2nd `  L ) )
 
Theoremcaucvgprprlemm 7879* Lemma for caucvgprpr 7895. The putative limit is inhabited. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  ( E. s  e.  Q.  s  e.  ( 1st `  L )  /\  E. t  e.  Q.  t  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemopl 7880* Lemma for caucvgprpr 7895. The lower cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  e.  ( 1st `  L ) )  ->  E. t  e.  Q.  ( s  <Q  t 
 /\  t  e.  ( 1st `  L ) ) )
 
Theoremcaucvgprprlemlol 7881* Lemma for caucvgprpr 7895. The lower cut of the putative limit is lower. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  <Q  t  /\  t  e.  ( 1st `  L ) )  ->  s  e.  ( 1st `  L ) )
 
Theoremcaucvgprprlemopu 7882* Lemma for caucvgprpr 7895. The upper cut of the putative limit is open. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  t  e.  ( 2nd `  L ) )  ->  E. s  e.  Q.  ( s  <Q  t 
 /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemupu 7883* Lemma for caucvgprpr 7895. The upper cut of the putative limit is upper. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ( ph  /\  s  <Q  t  /\  s  e.  ( 2nd `  L ) )  ->  t  e.  ( 2nd `  L ) )
 
Theoremcaucvgprprlemrnd 7884* Lemma for caucvgprpr 7895. The putative limit is rounded. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  ( A. s  e.  Q.  ( s  e.  ( 1st `  L )  <->  E. t  e.  Q.  ( s  <Q  t  /\  t  e.  ( 1st `  L ) ) ) 
 /\  A. t  e.  Q.  ( t  e.  ( 2nd `  L )  <->  E. s  e.  Q.  ( s  <Q  t  /\  s  e.  ( 2nd `  L ) ) ) ) )
 
Theoremcaucvgprprlemdisj 7885* Lemma for caucvgprpr 7895. The putative limit is disjoint. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. s  e.  Q.  -.  ( s  e.  ( 1st `  L )  /\  s  e.  ( 2nd `  L ) ) )
 
Theoremcaucvgprprlemloc 7886* Lemma for caucvgprpr 7895. The putative limit is located. (Contributed by Jim Kingdon, 21-Dec-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. s  e.  Q.  A. t  e. 
 Q.  ( s  <Q  t 
 ->  ( s  e.  ( 1st `  L )  \/  t  e.  ( 2nd `  L ) ) ) )
 
Theoremcaucvgprprlemcl 7887* Lemma for caucvgprpr 7895. The putative limit is a positive real. (Contributed by Jim Kingdon, 21-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprprlemclphr 7888* Lemma for caucvgprpr 7895. The putative limit is a positive real. Like caucvgprprlemcl 7887 but without a disjoint variable condition between  ph and  r. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  L  e.  P. )
 
Theoremcaucvgprprlemexbt 7889* Lemma for caucvgprpr 7895. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  T  e.  P. )   &    |-  ( ph  ->  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
 q  |  Q  <Q  q } >. )  <P  T )   =>    |-  ( ph  ->  E. b  e.  N.  ( ( ( F `  b ) 
 +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T )
 
Theoremcaucvgprprlemexb 7890* Lemma for caucvgprpr 7895. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  R  e.  N. )   =>    |-  ( ph  ->  ( ( ( L  +P.  Q )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  R )  +P.  Q )  ->  E. b  e.  N.  ( ( ( F `
  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  ( Q  +P.  <. { p  |  p  <Q  ( *Q `  [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. ) )  <P  ( ( F `  R )  +P.  Q ) ) )
 
Theoremcaucvgprprlemaddq 7891* Lemma for caucvgprpr 7895. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  X  e.  P. )   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  E. r  e.  N.  ( X  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  r
 )  +P.  Q )
 )   =>    |-  ( ph  ->  X  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem1 7892* Lemma for caucvgprpr 7895. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  ( F `  K )  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem2 7893* Lemma for caucvgprpr 7895. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  L  <P  ( ( F `  K )  +P.  Q ) )
 
Theoremcaucvgprprlemlim 7894* Lemma for caucvgprpr 7895. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. x  e.  P.  E. j  e. 
 N.  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L 
 +P.  x )  /\  L  <P  ( ( F `
  k )  +P.  x ) ) ) )
 
Theoremcaucvgprpr 7895* A Cauchy sequence of positive reals with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a given value  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This is similar to caucvgpr 7865 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7845) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.)

 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. x  e. 
 P.  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <P  ( y  +P.  x )  /\  y  <P  ( ( F `  k
 )  +P.  x )
 ) ) )
 
Theoremsuplocexprlemell 7896* Lemma for suplocexpr 7908. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
 
Theoremsuplocexprlem2b 7897 Lemma for suplocexpr 7908. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( A  C_  P.  ->  ( 2nd `  B )  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
 )
 
Theoremsuplocexprlemss 7898* Lemma for suplocexpr 7908. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A  C_  P. )
 
Theoremsuplocexprlemml 7899* Lemma for suplocexpr 7908. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
 
Theoremsuplocexprlemrl 7900* Lemma for suplocexpr 7908. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A. q  e. 
 Q.  ( q  e. 
 U. ( 1st " A ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16411
  Copyright terms: Public domain < Previous  Next >