HomeHome Intuitionistic Logic Explorer
Theorem List (p. 79 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7801-7900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremcaucvgprprlemexbt 7801* Lemma for caucvgprpr 7807. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 16-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  Q. )   &    |-  ( ph  ->  T  e.  P. )   &    |-  ( ph  ->  ( L  +P.  <. { p  |  p  <Q  Q } ,  {
 q  |  Q  <Q  q } >. )  <P  T )   =>    |-  ( ph  ->  E. b  e.  N.  ( ( ( F `  b ) 
 +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  <. { p  |  p  <Q  Q } ,  { q  |  Q  <Q  q } >. )  <P  T )
 
Theoremcaucvgprprlemexb 7802* Lemma for caucvgprpr 7807. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 15-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  R  e.  N. )   =>    |-  ( ph  ->  ( ( ( L  +P.  Q )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  R )  +P.  Q )  ->  E. b  e.  N.  ( ( ( F `
  b )  +P.  <. { p  |  p  <Q  ( *Q `  [ <. b ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. b ,  1o >. ]  ~Q  )  <Q  q } >. ) 
 +P.  ( Q  +P.  <. { p  |  p  <Q  ( *Q `  [ <. R ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. R ,  1o >. ]  ~Q  )  <Q  q } >. ) )  <P  ( ( F `  R )  +P.  Q ) ) )
 
Theoremcaucvgprprlemaddq 7803* Lemma for caucvgprpr 7807. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 5-Jun-2021.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  X  e.  P. )   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  E. r  e.  N.  ( X  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  ( ( F `  r
 )  +P.  Q )
 )   =>    |-  ( ph  ->  X  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem1 7804* Lemma for caucvgprpr 7807. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  ( F `  K )  <P  ( L  +P.  Q ) )
 
Theoremcaucvgprprlem2 7805* Lemma for caucvgprpr 7807. Part of showing the putative limit to be a limit. (Contributed by Jim Kingdon, 25-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   &    |-  ( ph  ->  Q  e.  P. )   &    |-  ( ph  ->  J 
 <N  K )   &    |-  ( ph  ->  <. { l  |  l  <Q  ( *Q `  [ <. J ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. J ,  1o >. ]  ~Q  )  <Q  u } >.  <P  Q )   =>    |-  ( ph  ->  L  <P  ( ( F `  K )  +P.  Q ) )
 
Theoremcaucvgprprlemlim 7806* Lemma for caucvgprpr 7807. The putative limit is a limit. (Contributed by Jim Kingdon, 21-Nov-2020.)
 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   &    |-  L  =  <. { l  e.  Q.  |  E. r  e.  N.  <. { p  |  p  <Q  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  )
 ) } ,  {
 q  |  ( l  +Q  ( *Q `  [ <. r ,  1o >. ]  ~Q  ) )  <Q  q } >. 
 <P  ( F `  r
 ) } ,  { u  e.  Q.  |  E. r  e.  N.  (
 ( F `  r
 )  +P.  <. { p  |  p  <Q  ( *Q ` 
 [ <. r ,  1o >. ]  ~Q  ) } ,  { q  |  ( *Q `  [ <. r ,  1o >. ]  ~Q  )  <Q  q } >. )  <P  <. { p  |  p  <Q  u } ,  {
 q  |  u  <Q  q } >. } >.   =>    |-  ( ph  ->  A. x  e.  P.  E. j  e. 
 N.  A. k  e.  N.  ( j  <N  k  ->  ( ( F `  k )  <P  ( L 
 +P.  x )  /\  L  <P  ( ( F `
  k )  +P.  x ) ) ) )
 
Theoremcaucvgprpr 7807* A Cauchy sequence of positive reals with a modulus of convergence converges to a positive real. This is basically Corollary 11.2.13 of [HoTT], p. (varies) (one key difference being that this is for positive reals rather than signed reals). Also, the HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis). We also specify that every term needs to be larger than a given value  A, to avoid the case where we have positive terms which "converge" to zero (which is not a positive real).

This is similar to caucvgpr 7777 except that values of the sequence are positive reals rather than positive fractions. Reading that proof first (or cauappcvgpr 7757) might help in understanding this one, as they are slightly simpler but similarly structured. (Contributed by Jim Kingdon, 14-Nov-2020.)

 |-  ( ph  ->  F : N. --> P. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <P  ( ( F `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( F `  k )  <P  ( ( F `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <P  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  P.  A. x  e. 
 P.  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <P  ( y  +P.  x )  /\  y  <P  ( ( F `  k
 )  +P.  x )
 ) ) )
 
Theoremsuplocexprlemell 7808* Lemma for suplocexpr 7820. Membership in the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( B  e.  U. ( 1st " A )  <->  E. x  e.  A  B  e.  ( 1st `  x ) )
 
Theoremsuplocexprlem2b 7809 Lemma for suplocexpr 7820. Expression for the lower cut of the putative supremum. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( A  C_  P.  ->  ( 2nd `  B )  =  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u }
 )
 
Theoremsuplocexprlemss 7810* Lemma for suplocexpr 7820. 
A is a set of positive reals. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A  C_  P. )
 
Theoremsuplocexprlemml 7811* Lemma for suplocexpr 7820. The lower cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  U. ( 1st " A ) )
 
Theoremsuplocexprlemrl 7812* Lemma for suplocexpr 7820. The lower cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  A. q  e. 
 Q.  ( q  e. 
 U. ( 1st " A ) 
 <-> 
 E. r  e.  Q.  ( q  <Q  r  /\  r  e.  U. ( 1st " A ) ) ) )
 
Theoremsuplocexprlemmu 7813* Lemma for suplocexpr 7820. The upper cut of the putative supremum is inhabited. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  E. s  e.  Q.  s  e.  ( 2nd `  B ) )
 
Theoremsuplocexprlemru 7814* Lemma for suplocexpr 7820. The upper cut of the putative supremum is rounded. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. r  e. 
 Q.  ( r  e.  ( 2nd `  B ) 
 <-> 
 E. q  e.  Q.  ( q  <Q  r  /\  q  e.  ( 2nd `  B ) ) ) )
 
Theoremsuplocexprlemdisj 7815* Lemma for suplocexpr 7820. The putative supremum is disjoint. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  -.  ( q  e.  U. ( 1st " A )  /\  q  e.  ( 2nd `  B ) ) )
 
Theoremsuplocexprlemloc 7816* Lemma for suplocexpr 7820. The putative supremum is located. (Contributed by Jim Kingdon, 9-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. q  e. 
 Q.  A. r  e.  Q.  ( q  <Q  r  ->  ( q  e.  U. ( 1st " A )  \/  r  e.  ( 2nd `  B ) ) ) )
 
Theoremsuplocexprlemex 7817* Lemma for suplocexpr 7820. The putative supremum is a positive real. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  B  e.  P. )
 
Theoremsuplocexprlemub 7818* Lemma for suplocexpr 7820. The putative supremum is an upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  A. y  e.  A  -.  B  <P  y )
 
Theoremsuplocexprlemlub 7819* Lemma for suplocexpr 7820. The putative supremum is a least upper bound. (Contributed by Jim Kingdon, 14-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   &    |-  B  =  <. U. ( 1st " A ) ,  { u  e.  Q.  |  E. w  e.  |^| ( 2nd " A ) w  <Q  u } >.   =>    |-  ( ph  ->  ( y  <P  B  ->  E. z  e.  A  y  <P  z ) )
 
Theoremsuplocexpr 7820* An inhabited, bounded-above, located set of positive reals has a supremum. (Contributed by Jim Kingdon, 7-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  P.  A. y  e.  A  y 
 <P  x )   &    |-  ( ph  ->  A. x  e.  P.  A. y  e.  P.  ( x  <P  y  ->  ( E. z  e.  A  x  <P  z  \/  A. z  e.  A  z  <P  y ) ) )   =>    |-  ( ph  ->  E. x  e.  P.  ( A. y  e.  A  -.  x  <P  y 
 /\  A. y  e.  P.  ( y  <P  x  ->  E. z  e.  A  y  <P  z ) ) )
 
Definitiondf-enr 7821* Define equivalence relation for signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
 |- 
 ~R  =  { <. x ,  y >.  |  ( ( x  e.  ( P.  X.  P. )  /\  y  e.  ( P.  X. 
 P. ) )  /\  E. z E. w E. v E. u ( ( x  =  <. z ,  w >.  /\  y  = 
 <. v ,  u >. ) 
 /\  ( z  +P.  u )  =  ( w 
 +P.  v ) ) ) }
 
Definitiondf-nr 7822 Define class of signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 25-Jul-1995.)
 |- 
 R.  =  ( ( P.  X.  P. ) /.  ~R  )
 
Definitiondf-plr 7823* Define addition on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
 |- 
 +R  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [ <. ( w 
 +P.  u ) ,  ( v  +P.  f
 ) >. ]  ~R  )
 ) }
 
Definitiondf-mr 7824* Define multiplication on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 25-Aug-1995.)
 |- 
 .R  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  R.  /\  y  e.  R. )  /\  E. w E. v E. u E. f ( ( x  =  [ <. w ,  v >. ] 
 ~R  /\  y  =  [ <. u ,  f >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u ) 
 +P.  ( v  .P.  f ) ) ,  ( ( w  .P.  f )  +P.  ( v 
 .P.  u ) )
 >. ]  ~R  ) ) }
 
Definitiondf-ltr 7825* Define ordering relation on signed reals. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.4 of [Gleason] p. 127. (Contributed by NM, 14-Feb-1996.)
 |- 
 <R  =  { <. x ,  y >.  |  ( ( x  e.  R.  /\  y  e.  R. )  /\  E. z E. w E. v E. u ( ( x  =  [ <. z ,  w >. ] 
 ~R  /\  y  =  [ <. v ,  u >. ]  ~R  )  /\  ( z  +P.  u ) 
 <P  ( w  +P.  v
 ) ) ) }
 
Definitiondf-0r 7826 Define signed real constant 0. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
 |- 
 0R  =  [ <. 1P ,  1P >. ]  ~R
 
Definitiondf-1r 7827 Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.)
 |- 
 1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
 
Definitiondf-m1r 7828 Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.)
 |- 
 -1R  =  [ <. 1P ,  ( 1P  +P.  1P ) >. ]  ~R
 
Theoremenrbreq 7829 Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( <. A ,  B >.  ~R  <. C ,  D >.  <-> 
 ( A  +P.  D )  =  ( B  +P.  C ) ) )
 
Theoremenrer 7830 The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.)
 |- 
 ~R  Er  ( P.  X. 
 P. )
 
Theoremenreceq 7831 Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  =  [ <. C ,  D >. ] 
 ~R 
 <->  ( A  +P.  D )  =  ( B  +P.  C ) ) )
 
Theoremenrex 7832 The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.)
 |- 
 ~R  e.  _V
 
Theoremltrelsr 7833 Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.)
 |- 
 <R  C_  ( R.  X.  R. )
 
Theoremaddcmpblnr 7834 Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G ) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S ) >. ) )
 
Theoremmulcmpblnrlemg 7835 Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
 ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D 
 .P.  F )  +P.  (
 ( ( A  .P.  G )  +P.  ( B 
 .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D 
 .P.  S ) ) ) ) ) )
 
Theoremmulcmpblnr 7836 Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  <. ( ( A  .P.  F )  +P.  ( B 
 .P.  G ) ) ,  ( ( A  .P.  G )  +P.  ( B 
 .P.  F ) ) >.  ~R 
 <. ( ( C  .P.  R )  +P.  ( D 
 .P.  S ) ) ,  ( ( C  .P.  S )  +P.  ( D 
 .P.  R ) ) >. ) )
 
Theoremprsrlem1 7837* Decomposing signed reals into positive reals. Lemma for addsrpr 7840 and mulsrpr 7841. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( ( A  e.  ( ( P. 
 X.  P. ) /.  ~R  )  /\  B  e.  (
 ( P.  X.  P. ) /.  ~R  ) ) 
 /\  ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ] 
 ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
 ( ( w  e. 
 P.  /\  v  e.  P. )  /\  ( s  e.  P.  /\  f  e.  P. ) )  /\  ( ( u  e. 
 P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. ) ) ) 
 /\  ( ( w 
 +P.  f )  =  ( v  +P.  s
 )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
 
Theoremaddsrmo 7838* There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  E* z E. w E. v E. u E. t
 ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w 
 +P.  u ) ,  ( v  +P.  t
 ) >. ]  ~R  )
 )
 
Theoremmulsrmo 7839* There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  E* z E. w E. v E. u E. t
 ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u ) 
 +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  ( v 
 .P.  u ) )
 >. ]  ~R  ) )
 
Theoremaddsrpr 7840 Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ] 
 ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
 
Theoremmulsrpr 7841 Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  .R  [ <. C ,  D >. ] 
 ~R  )  =  [ <. ( ( A  .P.  C )  +P.  ( B 
 .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B 
 .P.  C ) ) >. ] 
 ~R  )
 
Theoremltsrprg 7842 Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) )
 
Theoremgt0srpr 7843 Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
 |-  ( 0R  <R  [ <. A ,  B >. ]  ~R  <->  B  <P  A )
 
Theorem0nsr 7844 The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.)
 |- 
 -.  (/)  e.  R.
 
Theorem0r 7845 The constant  0R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 0R  e.  R.
 
Theorem1sr 7846 The constant  1R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 1R  e.  R.
 
Theoremm1r 7847 The constant  -1R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 -1R  e.  R.
 
Theoremaddclsr 7848 Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  +R  B )  e.  R. )
 
Theoremmulclsr 7849 Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  .R  B )  e.  R. )
 
Theoremaddcomsrg 7850 Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  +R  B )  =  ( B  +R  A ) )
 
Theoremaddasssrg 7851 Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  +R  B )  +R  C )  =  ( A  +R  ( B  +R  C ) ) )
 
Theoremmulcomsrg 7852 Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  .R  B )  =  ( B  .R  A ) )
 
Theoremmulasssrg 7853 Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  .R  B )  .R  C )  =  ( A  .R  ( B  .R  C ) ) )
 
Theoremdistrsrg 7854 Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A 
 .R  B )  +R  ( A  .R  C ) ) )
 
Theoremm1p1sr 7855 Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
 |-  ( -1R  +R  1R )  =  0R
 
Theoremm1m1sr 7856 Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
 |-  ( -1R  .R  -1R )  =  1R
 
Theoremlttrsr 7857* Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |-  ( ( f  e. 
 R.  /\  g  e.  R. 
 /\  h  e.  R. )  ->  ( ( f 
 <R  g  /\  g  <R  h )  ->  f  <R  h ) )
 
Theoremltposr 7858 Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |- 
 <R  Po  R.
 
Theoremltsosr 7859 Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
 |- 
 <R  Or  R.
 
Theorem0lt1sr 7860 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.)
 |- 
 0R  <R  1R
 
Theorem1ne0sr 7861 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.)
 |- 
 -.  1R  =  0R
 
Theorem0idsr 7862 The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
 |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
 
Theorem1idsr 7863 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
 |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
 
Theorem00sr 7864 A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
 |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
 
Theoremltasrg 7865 Ordering property of addition. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  <R  B  <->  ( C  +R  A )  <R  ( C  +R  B ) ) )
 
Theorempn0sr 7866 A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
 |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
 
Theoremnegexsr 7867* Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
 |-  ( A  e.  R.  ->  E. x  e.  R.  ( A  +R  x )  =  0R )
 
Theoremrecexgt0sr 7868* The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
 |-  ( 0R  <R  A  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( A  .R  x )  =  1R ) )
 
Theoremrecexsrlem 7869* The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.)
 |-  ( 0R  <R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R )
 
Theoremaddgt0sr 7870 The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.)
 |-  ( ( 0R  <R  A 
 /\  0R  <R  B ) 
 ->  0R  <R  ( A  +R  B ) )
 
Theoremltadd1sr 7871 Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.)
 |-  ( A  e.  R.  ->  A  <R  ( A  +R  1R ) )
 
Theoremltm1sr 7872 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
 |-  ( A  e.  R.  ->  ( A  +R  -1R )  <R  A )
 
Theoremmulgt0sr 7873 The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
 |-  ( ( 0R  <R  A 
 /\  0R  <R  B ) 
 ->  0R  <R  ( A  .R  B ) )
 
Theoremaptisr 7874 Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\ 
 -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )
 
Theoremmulextsr1lem 7875 Lemma for mulextsr1 7876. (Contributed by Jim Kingdon, 17-Feb-2020.)
 |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  ->  ( ( ( ( X  .P.  U ) 
 +P.  ( Y  .P.  V ) )  +P.  (
 ( Z  .P.  V )  +P.  ( W  .P.  U ) ) )  <P  ( ( ( X  .P.  V )  +P.  ( Y 
 .P.  U ) )  +P.  ( ( Z  .P.  U )  +P.  ( W 
 .P.  V ) ) ) 
 ->  ( ( X  +P.  W )  <P  ( Y  +P.  Z )  \/  ( Z  +P.  Y )  <P  ( W  +P.  X ) ) ) )
 
Theoremmulextsr1 7876 Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  .R  C )  <R  ( B 
 .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )
 
Theoremarchsr 7877* For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  },  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R is the embedding of the positive integer  x into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
 |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. ( <. { l  |  l  <Q  [
 <. x ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
 
Theoremsrpospr 7878* Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( ( A  e.  R. 
 /\  0R  <R  A ) 
 ->  E! x  e.  P.  [
 <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
 
Theoremprsrcl 7879 Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( A  e.  P.  ->  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  e.  R. )
 
Theoremprsrpos 7880 Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( A  e.  P.  ->  0R  <R  [ <. ( A 
 +P.  1P ) ,  1P >. ]  ~R  )
 
Theoremprsradd 7881 Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B ) 
 +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R 
 [ <. ( B  +P.  1P ) ,  1P >. ] 
 ~R  ) )
 
Theoremprsrlt 7882 Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  <R  [ <. ( B 
 +P.  1P ) ,  1P >. ]  ~R  ) )
 
Theoremprsrriota 7883* Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  R. 
 /\  0R  <R  A ) 
 ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
 
Theoremcaucvgsrlemcl 7884* Lemma for caucvgsr 7897. Terms of the sequence from caucvgsrlemgt1 7890 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   =>    |-  ( ( ph  /\  A  e.  N. )  ->  ( iota_
 y  e.  P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ] 
 ~R  )  e.  P. )
 
Theoremcaucvgsrlemasr 7885* Lemma for caucvgsr 7897. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
 |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `
  m ) )   =>    |-  ( ph  ->  A  e.  R. )
 
Theoremcaucvgsrlemfv 7886* Lemma for caucvgsr 7897. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ( ph  /\  A  e.  N. )  ->  [ <. ( ( G `
  A )  +P.  1P ) ,  1P >. ] 
 ~R  =  ( F `
  A ) )
 
Theoremcaucvgsrlemf 7887* Lemma for caucvgsr 7897. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  G : N. --> P. )
 
Theoremcaucvgsrlemcau 7888* Lemma for caucvgsr 7897. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( G `  n )  <P  ( ( G `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( G `  k )  <P  ( ( G `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )
 
Theoremcaucvgsrlembound 7889* Lemma for caucvgsr 7897. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  A. m  e.  N.  1P  <P  ( G `  m ) )
 
Theoremcaucvgsrlemgt1 7890* Lemma for caucvgsr 7897. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. i  e.  N.  (
 j  <N  i  ->  (
 ( F `  i
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i
 )  +R  x )
 ) ) ) )
 
Theoremcaucvgsrlemoffval 7891* Lemma for caucvgsr 7897. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ( ph  /\  J  e.  N. )  ->  ( ( G `  J )  +R  A )  =  ( ( F `
  J )  +R  1R ) )
 
Theoremcaucvgsrlemofff 7892* Lemma for caucvgsr 7897. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  G : N. --> R. )
 
Theoremcaucvgsrlemoffcau 7893* Lemma for caucvgsr 7897. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( G `  n )  <R  ( ( G `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )
 
Theoremcaucvgsrlemoffgt1 7894* Lemma for caucvgsr 7897. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
 
Theoremcaucvgsrlemoffres 7895* Lemma for caucvgsr 7897. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
 N.  ( j  <N  k 
 ->  ( ( F `  k )  <R  ( y  +R  x )  /\  y  <R  ( ( F `
  k )  +R  x ) ) ) ) )
 
Theoremcaucvgsrlembnd 7896* Lemma for caucvgsr 7897. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k
 )  +R  x )
 ) ) ) )
 
Theoremcaucvgsr 7897* A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7807 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7896).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7892).

3. Since a signed real (element of  R.) which is greater than zero can be mapped to a positive real (element of  P.), perform that mapping on each element of the sequence and invoke caucvgprpr 7807 to get a limit (see caucvgsrlemgt1 7890).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7890).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7895). (Contributed by Jim Kingdon, 20-Jun-2021.)

 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k
 )  +R  x )
 ) ) ) )
 
Theoremltpsrprg 7898 Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  R. )  ->  ( ( C  +R  [
 <. A ,  1P >. ] 
 ~R  )  <R  ( C  +R  [ <. B ,  1P >. ]  ~R  )  <->  A 
 <P  B ) )
 
Theoremmappsrprg 7899 Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) )
 
Theoremmap2psrprg 7900* Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( C  e.  R.  ->  ( ( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
 )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15887
  Copyright terms: Public domain < Previous  Next >