HomeHome Intuitionistic Logic Explorer
Theorem List (p. 79 of 157)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 7801-7900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremaddcmpblnr 7801 Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  <. ( A  +P.  F ) ,  ( B  +P.  G ) >.  ~R  <. ( C  +P.  R ) ,  ( D  +P.  S ) >. ) )
 
Theoremmulcmpblnrlemg 7802 Lemma used in lemma showing compatibility of multiplication. (Contributed by Jim Kingdon, 1-Jan-2020.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  ( ( D  .P.  F )  +P.  ( ( ( A  .P.  F )  +P.  ( B  .P.  G ) )  +P.  (
 ( C  .P.  S )  +P.  ( D  .P.  R ) ) ) )  =  ( ( D 
 .P.  F )  +P.  (
 ( ( A  .P.  G )  +P.  ( B 
 .P.  F ) )  +P.  ( ( C  .P.  R )  +P.  ( D 
 .P.  S ) ) ) ) ) )
 
Theoremmulcmpblnr 7803 Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.)
 |-  ( ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. )
 )  /\  ( ( F  e.  P.  /\  G  e.  P. )  /\  ( R  e.  P.  /\  S  e.  P. ) ) ) 
 ->  ( ( ( A 
 +P.  D )  =  ( B  +P.  C ) 
 /\  ( F  +P.  S )  =  ( G 
 +P.  R ) )  ->  <. ( ( A  .P.  F )  +P.  ( B 
 .P.  G ) ) ,  ( ( A  .P.  G )  +P.  ( B 
 .P.  F ) ) >.  ~R 
 <. ( ( C  .P.  R )  +P.  ( D 
 .P.  S ) ) ,  ( ( C  .P.  S )  +P.  ( D 
 .P.  R ) ) >. ) )
 
Theoremprsrlem1 7804* Decomposing signed reals into positive reals. Lemma for addsrpr 7807 and mulsrpr 7808. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( ( A  e.  ( ( P. 
 X.  P. ) /.  ~R  )  /\  B  e.  (
 ( P.  X.  P. ) /.  ~R  ) ) 
 /\  ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  ( A  =  [ <. s ,  f >. ] 
 ~R  /\  B  =  [ <. g ,  h >. ]  ~R  ) ) )  ->  ( (
 ( ( w  e. 
 P.  /\  v  e.  P. )  /\  ( s  e.  P.  /\  f  e.  P. ) )  /\  ( ( u  e. 
 P.  /\  t  e.  P. )  /\  ( g  e.  P.  /\  h  e.  P. ) ) ) 
 /\  ( ( w 
 +P.  f )  =  ( v  +P.  s
 )  /\  ( u  +P.  h )  =  ( t  +P.  g ) ) ) )
 
Theoremaddsrmo 7805* There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  E* z E. w E. v E. u E. t
 ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( w 
 +P.  u ) ,  ( v  +P.  t
 ) >. ]  ~R  )
 )
 
Theoremmulsrmo 7806* There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.)
 |-  ( ( A  e.  ( ( P.  X.  P. ) /.  ~R  )  /\  B  e.  ( ( P.  X.  P. ) /.  ~R  ) )  ->  E* z E. w E. v E. u E. t
 ( ( A  =  [ <. w ,  v >. ]  ~R  /\  B  =  [ <. u ,  t >. ]  ~R  )  /\  z  =  [ <. ( ( w  .P.  u ) 
 +P.  ( v  .P.  t ) ) ,  ( ( w  .P.  t )  +P.  ( v 
 .P.  u ) )
 >. ]  ~R  ) )
 
Theoremaddsrpr 7807 Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  +R  [ <. C ,  D >. ] 
 ~R  )  =  [ <. ( A  +P.  C ) ,  ( B  +P.  D ) >. ]  ~R  )
 
Theoremmulsrpr 7808 Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  .R  [ <. C ,  D >. ] 
 ~R  )  =  [ <. ( ( A  .P.  C )  +P.  ( B 
 .P.  D ) ) ,  ( ( A  .P.  D )  +P.  ( B 
 .P.  C ) ) >. ] 
 ~R  )
 
Theoremltsrprg 7809 Ordering of signed reals in terms of positive reals. (Contributed by Jim Kingdon, 2-Jan-2019.)
 |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( C  e.  P.  /\  D  e.  P. ) )  ->  ( [ <. A ,  B >. ]  ~R  <R  [ <. C ,  D >. ]  ~R  <->  ( A  +P.  D )  <P  ( B  +P.  C ) ) )
 
Theoremgt0srpr 7810 Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.)
 |-  ( 0R  <R  [ <. A ,  B >. ]  ~R  <->  B  <P  A )
 
Theorem0nsr 7811 The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.)
 |- 
 -.  (/)  e.  R.
 
Theorem0r 7812 The constant  0R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 0R  e.  R.
 
Theorem1sr 7813 The constant  1R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 1R  e.  R.
 
Theoremm1r 7814 The constant  -1R is a signed real. (Contributed by NM, 9-Aug-1995.)
 |- 
 -1R  e.  R.
 
Theoremaddclsr 7815 Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  +R  B )  e.  R. )
 
Theoremmulclsr 7816 Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  .R  B )  e.  R. )
 
Theoremaddcomsrg 7817 Addition of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  +R  B )  =  ( B  +R  A ) )
 
Theoremaddasssrg 7818 Addition of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  +R  B )  +R  C )  =  ( A  +R  ( B  +R  C ) ) )
 
Theoremmulcomsrg 7819 Multiplication of signed reals is commutative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( A  .R  B )  =  ( B  .R  A ) )
 
Theoremmulasssrg 7820 Multiplication of signed reals is associative. (Contributed by Jim Kingdon, 3-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  .R  B )  .R  C )  =  ( A  .R  ( B  .R  C ) ) )
 
Theoremdistrsrg 7821 Multiplication of signed reals is distributive. (Contributed by Jim Kingdon, 4-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  .R  ( B  +R  C ) )  =  ( ( A 
 .R  B )  +R  ( A  .R  C ) ) )
 
Theoremm1p1sr 7822 Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.)
 |-  ( -1R  +R  1R )  =  0R
 
Theoremm1m1sr 7823 Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.)
 |-  ( -1R  .R  -1R )  =  1R
 
Theoremlttrsr 7824* Signed real 'less than' is a transitive relation. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |-  ( ( f  e. 
 R.  /\  g  e.  R. 
 /\  h  e.  R. )  ->  ( ( f 
 <R  g  /\  g  <R  h )  ->  f  <R  h ) )
 
Theoremltposr 7825 Signed real 'less than' is a partial order. (Contributed by Jim Kingdon, 4-Jan-2019.)
 |- 
 <R  Po  R.
 
Theoremltsosr 7826 Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.)
 |- 
 <R  Or  R.
 
Theorem0lt1sr 7827 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.)
 |- 
 0R  <R  1R
 
Theorem1ne0sr 7828 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.)
 |- 
 -.  1R  =  0R
 
Theorem0idsr 7829 The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
 |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
 
Theorem1idsr 7830 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
 |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
 
Theorem00sr 7831 A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.)
 |-  ( A  e.  R.  ->  ( A  .R  0R )  =  0R )
 
Theoremltasrg 7832 Ordering property of addition. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( A  <R  B  <->  ( C  +R  A )  <R  ( C  +R  B ) ) )
 
Theorempn0sr 7833 A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.)
 |-  ( A  e.  R.  ->  ( A  +R  ( A  .R  -1R ) )  =  0R )
 
Theoremnegexsr 7834* Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.)
 |-  ( A  e.  R.  ->  E. x  e.  R.  ( A  +R  x )  =  0R )
 
Theoremrecexgt0sr 7835* The reciprocal of a positive signed real exists and is positive. (Contributed by Jim Kingdon, 6-Feb-2020.)
 |-  ( 0R  <R  A  ->  E. x  e.  R.  ( 0R  <R  x  /\  ( A  .R  x )  =  1R ) )
 
Theoremrecexsrlem 7836* The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.)
 |-  ( 0R  <R  A  ->  E. x  e.  R.  ( A  .R  x )  =  1R )
 
Theoremaddgt0sr 7837 The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.)
 |-  ( ( 0R  <R  A 
 /\  0R  <R  B ) 
 ->  0R  <R  ( A  +R  B ) )
 
Theoremltadd1sr 7838 Adding one to a signed real yields a larger signed real. (Contributed by Jim Kingdon, 7-Jul-2021.)
 |-  ( A  e.  R.  ->  A  <R  ( A  +R  1R ) )
 
Theoremltm1sr 7839 Adding minus one to a signed real yields a smaller signed real. (Contributed by Jim Kingdon, 21-Jan-2024.)
 |-  ( A  e.  R.  ->  ( A  +R  -1R )  <R  A )
 
Theoremmulgt0sr 7840 The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.)
 |-  ( ( 0R  <R  A 
 /\  0R  <R  B ) 
 ->  0R  <R  ( A  .R  B ) )
 
Theoremaptisr 7841 Apartness of signed reals is tight. (Contributed by Jim Kingdon, 29-Jan-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\ 
 -.  ( A  <R  B  \/  B  <R  A ) )  ->  A  =  B )
 
Theoremmulextsr1lem 7842 Lemma for mulextsr1 7843. (Contributed by Jim Kingdon, 17-Feb-2020.)
 |-  ( ( ( X  e.  P.  /\  Y  e.  P. )  /\  ( Z  e.  P.  /\  W  e.  P. )  /\  ( U  e.  P.  /\  V  e.  P. ) )  ->  ( ( ( ( X  .P.  U ) 
 +P.  ( Y  .P.  V ) )  +P.  (
 ( Z  .P.  V )  +P.  ( W  .P.  U ) ) )  <P  ( ( ( X  .P.  V )  +P.  ( Y 
 .P.  U ) )  +P.  ( ( Z  .P.  U )  +P.  ( W 
 .P.  V ) ) ) 
 ->  ( ( X  +P.  W )  <P  ( Y  +P.  Z )  \/  ( Z  +P.  Y )  <P  ( W  +P.  X ) ) ) )
 
Theoremmulextsr1 7843 Strong extensionality of multiplication of signed reals. (Contributed by Jim Kingdon, 18-Feb-2020.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R.  /\  C  e.  R. )  ->  ( ( A  .R  C )  <R  ( B 
 .R  C )  ->  ( A  <R  B  \/  B  <R  A ) ) )
 
Theoremarchsr 7844* For any signed real, there is an integer that is greater than it. This is also known as the "archimedean property". The expression  [ <. ( <. { l  |  l 
<Q  [ <. x ,  1o >. ]  ~Q  },  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R is the embedding of the positive integer  x into the signed reals. (Contributed by Jim Kingdon, 23-Apr-2020.)
 |-  ( A  e.  R.  ->  E. x  e.  N.  A  <R  [ <. ( <. { l  |  l  <Q  [
 <. x ,  1o >. ] 
 ~Q  } ,  { u  |  [ <. x ,  1o >. ]  ~Q  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )
 
Theoremsrpospr 7845* Mapping from a signed real greater than zero to a positive real. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( ( A  e.  R. 
 /\  0R  <R  A ) 
 ->  E! x  e.  P.  [
 <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )
 
Theoremprsrcl 7846 Mapping from a positive real to a signed real. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( A  e.  P.  ->  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  e.  R. )
 
Theoremprsrpos 7847 Mapping from a positive real to a signed real yields a result greater than zero. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( A  e.  P.  ->  0R  <R  [ <. ( A 
 +P.  1P ) ,  1P >. ]  ~R  )
 
Theoremprsradd 7848 Mapping from positive real addition to signed real addition. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  [ <. ( ( A  +P.  B ) 
 +P.  1P ) ,  1P >. ]  ~R  =  ( [ <. ( A  +P.  1P ) ,  1P >. ]  ~R  +R 
 [ <. ( B  +P.  1P ) ,  1P >. ] 
 ~R  ) )
 
Theoremprsrlt 7849 Mapping from positive real ordering to signed real ordering. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P. )  ->  ( A  <P  B  <->  [ <. ( A  +P.  1P ) ,  1P >. ] 
 ~R  <R  [ <. ( B 
 +P.  1P ) ,  1P >. ]  ~R  ) )
 
Theoremprsrriota 7850* Mapping a restricted iota from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ( A  e.  R. 
 /\  0R  <R  A ) 
 ->  [ <. ( ( iota_ x  e.  P.  [ <. ( x  +P.  1P ) ,  1P >. ]  ~R  =  A )  +P.  1P ) ,  1P >. ]  ~R  =  A )
 
Theoremcaucvgsrlemcl 7851* Lemma for caucvgsr 7864. Terms of the sequence from caucvgsrlemgt1 7857 can be mapped to positive reals. (Contributed by Jim Kingdon, 2-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   =>    |-  ( ( ph  /\  A  e.  N. )  ->  ( iota_
 y  e.  P.  ( F `  A )  =  [ <. ( y  +P.  1P ) ,  1P >. ] 
 ~R  )  e.  P. )
 
Theoremcaucvgsrlemasr 7852* Lemma for caucvgsr 7864. The lower bound is a signed real. (Contributed by Jim Kingdon, 4-Jul-2021.)
 |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `
  m ) )   =>    |-  ( ph  ->  A  e.  R. )
 
Theoremcaucvgsrlemfv 7853* Lemma for caucvgsr 7864. Coercing sequence value from a positive real to a signed real. (Contributed by Jim Kingdon, 29-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ( ph  /\  A  e.  N. )  ->  [ <. ( ( G `
  A )  +P.  1P ) ,  1P >. ] 
 ~R  =  ( F `
  A ) )
 
Theoremcaucvgsrlemf 7854* Lemma for caucvgsr 7864. Defining the sequence in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  G : N. --> P. )
 
Theoremcaucvgsrlemcau 7855* Lemma for caucvgsr 7864. Defining the Cauchy condition in terms of positive reals. (Contributed by Jim Kingdon, 23-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( G `  n )  <P  ( ( G `
  k )  +P.  <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) 
 /\  ( G `  k )  <P  ( ( G `  n ) 
 +P.  <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >. ) ) ) )
 
Theoremcaucvgsrlembound 7856* Lemma for caucvgsr 7864. Defining the boundedness condition in terms of positive reals. (Contributed by Jim Kingdon, 25-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   &    |-  G  =  ( x  e.  N.  |->  (
 iota_ y  e.  P.  ( F `  x )  =  [ <. ( y 
 +P.  1P ) ,  1P >. ]  ~R  ) )   =>    |-  ( ph  ->  A. m  e.  N.  1P  <P  ( G `  m ) )
 
Theoremcaucvgsrlemgt1 7857* Lemma for caucvgsr 7864. A Cauchy sequence whose terms are greater than one converges. (Contributed by Jim Kingdon, 22-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. i  e.  N.  (
 j  <N  i  ->  (
 ( F `  i
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  i
 )  +R  x )
 ) ) ) )
 
Theoremcaucvgsrlemoffval 7858* Lemma for caucvgsr 7864. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ( ph  /\  J  e.  N. )  ->  ( ( G `  J )  +R  A )  =  ( ( F `
  J )  +R  1R ) )
 
Theoremcaucvgsrlemofff 7859* Lemma for caucvgsr 7864. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  G : N. --> R. )
 
Theoremcaucvgsrlemoffcau 7860* Lemma for caucvgsr 7864. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( G `  n )  <R  ( ( G `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( G `  k )  <R  ( ( G `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )
 
Theoremcaucvgsrlemoffgt1 7861* Lemma for caucvgsr 7864. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  A. m  e.  N.  1R  <R  ( G `  m ) )
 
Theoremcaucvgsrlemoffres 7862* Lemma for caucvgsr 7864. Offsetting the values of the sequence so they are greater than one. (Contributed by Jim Kingdon, 3-Jul-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   &    |-  G  =  ( a  e.  N.  |->  ( ( ( F `  a )  +R  1R )  +R  ( A  .R  -1R ) ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e.  R.  ( 0R  <R  x  ->  E. j  e.  N.  A. k  e. 
 N.  ( j  <N  k 
 ->  ( ( F `  k )  <R  ( y  +R  x )  /\  y  <R  ( ( F `
  k )  +R  x ) ) ) ) )
 
Theoremcaucvgsrlembnd 7863* Lemma for caucvgsr 7864. A Cauchy sequence with a lower bound converges. (Contributed by Jim Kingdon, 19-Jun-2021.)
 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   &    |-  ( ph  ->  A. m  e.  N.  A  <R  ( F `  m ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k
 )  +R  x )
 ) ) ) )
 
Theoremcaucvgsr 7864* A Cauchy sequence of signed reals with a modulus of convergence converges to a signed real. This is basically Corollary 11.2.13 of [HoTT], p. (varies). The HoTT book theorem has a modulus of convergence (that is, a rate of convergence) specified by (11.2.9) in HoTT whereas this theorem fixes the rate of convergence to say that all terms after the nth term must be within  1  /  n of the nth term (it should later be able to prove versions of this theorem with a different fixed rate or a modulus of convergence supplied as a hypothesis).

This is similar to caucvgprpr 7774 but is for signed reals rather than positive reals.

Here is an outline of how we prove it:

1. Choose a lower bound for the sequence (see caucvgsrlembnd 7863).

2. Offset each element of the sequence so that each element of the resulting sequence is greater than one (greater than zero would not suffice, because the limit as well as the elements of the sequence need to be positive) (see caucvgsrlemofff 7859).

3. Since a signed real (element of  R.) which is greater than zero can be mapped to a positive real (element of  P.), perform that mapping on each element of the sequence and invoke caucvgprpr 7774 to get a limit (see caucvgsrlemgt1 7857).

4. Map the resulting limit from positive reals back to signed reals (see caucvgsrlemgt1 7857).

5. Offset that limit so that we get the limit of the original sequence rather than the limit of the offsetted sequence (see caucvgsrlemoffres 7862). (Contributed by Jim Kingdon, 20-Jun-2021.)

 |-  ( ph  ->  F : N. --> R. )   &    |-  ( ph  ->  A. n  e.  N.  A. k  e.  N.  ( n  <N  k  ->  (
 ( F `  n )  <R  ( ( F `
  k )  +R  [
 <. ( <. { l  |  l  <Q  ( *Q ` 
 [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P.  1P ) ,  1P >. ]  ~R  )  /\  ( F `  k )  <R  ( ( F `  n )  +R  [ <. ( <. { l  |  l  <Q  ( *Q `  [ <. n ,  1o >. ]  ~Q  ) } ,  { u  |  ( *Q `  [ <. n ,  1o >. ]  ~Q  )  <Q  u } >.  +P. 
 1P ) ,  1P >. ]  ~R  ) ) ) )   =>    |-  ( ph  ->  E. y  e.  R.  A. x  e. 
 R.  ( 0R  <R  x 
 ->  E. j  e.  N.  A. k  e.  N.  (
 j  <N  k  ->  (
 ( F `  k
 )  <R  ( y  +R  x )  /\  y  <R  ( ( F `  k
 )  +R  x )
 ) ) ) )
 
Theoremltpsrprg 7865 Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  B  e.  P.  /\  C  e.  R. )  ->  ( ( C  +R  [
 <. A ,  1P >. ] 
 ~R  )  <R  ( C  +R  [ <. B ,  1P >. ]  ~R  )  <->  A 
 <P  B ) )
 
Theoremmappsrprg 7866 Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( ( A  e.  P. 
 /\  C  e.  R. )  ->  ( C  +R  -1R )  <R  ( C  +R  [ <. A ,  1P >. ]  ~R  ) )
 
Theoremmap2psrprg 7867* Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.)
 |-  ( C  e.  R.  ->  ( ( C  +R  -1R )  <R  A  <->  E. x  e.  P.  ( C  +R  [ <. x ,  1P >. ]  ~R  )  =  A )
 )
 
Theoremsuplocsrlemb 7868* Lemma for suplocsr 7871. The set  B is located. (Contributed by Jim Kingdon, 18-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  A. u  e. 
 P.  A. v  e.  P.  ( u  <P  v  ->  ( E. q  e.  B  u  <P  q  \/  A. q  e.  B  q  <P  v ) ) )
 
Theoremsuplocsrlempr 7869* Lemma for suplocsr 7871. The set  B has a least upper bound. (Contributed by Jim Kingdon, 19-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. v  e.  P.  ( A. w  e.  B  -.  v  <P  w 
 /\  A. w  e.  P.  ( w  <P  v  ->  E. u  e.  B  w  <P  u ) ) )
 
Theoremsuplocsrlem 7870* Lemma for suplocsr 7871. The set  A has a least upper bound. (Contributed by Jim Kingdon, 16-Jan-2024.)
 |-  B  =  { w  e.  P.  |  ( C  +R  [ <. w ,  1P >. ]  ~R  )  e.  A }   &    |-  ( ph  ->  A 
 C_  R. )   &    |-  ( ph  ->  C  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
Theoremsuplocsr 7871* An inhabited, bounded, located set of signed reals has a supremum. (Contributed by Jim Kingdon, 22-Jan-2024.)
 |-  ( ph  ->  E. x  x  e.  A )   &    |-  ( ph  ->  E. x  e.  R.  A. y  e.  A  y 
 <R  x )   &    |-  ( ph  ->  A. x  e.  R.  A. y  e.  R.  ( x  <R  y  ->  ( E. z  e.  A  x  <R  z  \/  A. z  e.  A  z  <R  y ) ) )   =>    |-  ( ph  ->  E. x  e.  R.  ( A. y  e.  A  -.  x  <R  y 
 /\  A. y  e.  R.  ( y  <R  x  ->  E. z  e.  A  y  <R  z ) ) )
 
Syntaxcc 7872 Class of complex numbers.
 class  CC
 
Syntaxcr 7873 Class of real numbers.
 class  RR
 
Syntaxcc0 7874 Extend class notation to include the complex number 0.
 class 
 0
 
Syntaxc1 7875 Extend class notation to include the complex number 1.
 class 
 1
 
Syntaxci 7876 Extend class notation to include the complex number i.
 class  _i
 
Syntaxcaddc 7877 Addition on complex numbers.
 class  +
 
Syntaxcltrr 7878 'Less than' predicate (defined over real subset of complex numbers).
 class  <RR
 
Syntaxcmul 7879 Multiplication on complex numbers. The token  x. is a center dot.
 class  x.
 
Definitiondf-c 7880 Define the set of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 CC  =  ( R. 
 X.  R. )
 
Definitiondf-0 7881 Define the complex number 0. (Contributed by NM, 22-Feb-1996.)
 |-  0  =  <. 0R ,  0R >.
 
Definitiondf-1 7882 Define the complex number 1. (Contributed by NM, 22-Feb-1996.)
 |-  1  =  <. 1R ,  0R >.
 
Definitiondf-i 7883 Define the complex number  _i (the imaginary unit). (Contributed by NM, 22-Feb-1996.)
 |-  _i  =  <. 0R ,  1R >.
 
Definitiondf-r 7884 Define the set of real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 RR  =  ( R. 
 X.  { 0R } )
 
Definitiondf-add 7885* Define addition over complex numbers. (Contributed by NM, 28-May-1995.)
 |- 
 +  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( w  +R  u ) ,  ( v  +R  f ) >. ) ) }
 
Definitiondf-mul 7886* Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.)
 |- 
 x.  =  { <. <. x ,  y >. ,  z >.  |  (
 ( x  e.  CC  /\  y  e.  CC )  /\  E. w E. v E. u E. f ( ( x  =  <. w ,  v >.  /\  y  =  <. u ,  f >. )  /\  z  = 
 <. ( ( w  .R  u )  +R  ( -1R  .R  ( v  .R  f ) ) ) ,  ( ( v 
 .R  u )  +R  ( w  .R  f ) ) >. ) ) }
 
Definitiondf-lt 7887* Define 'less than' on the real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  = 
 <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
 
Theoremopelcn 7888 Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.)
 |-  ( <. A ,  B >.  e.  CC  <->  ( A  e.  R. 
 /\  B  e.  R. ) )
 
Theoremopelreal 7889 Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.)
 |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
 
Theoremelreal 7890* Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.)
 |-  ( A  e.  RR  <->  E. x  e.  R.  <. x ,  0R >.  =  A )
 
Theoremelrealeu 7891* The real number mapping in elreal 7890 is unique. (Contributed by Jim Kingdon, 11-Jul-2021.)
 |-  ( A  e.  RR  <->  E! x  e.  R.  <. x ,  0R >.  =  A )
 
Theoremelreal2 7892 Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.)
 |-  ( A  e.  RR  <->  (
 ( 1st `  A )  e.  R.  /\  A  =  <. ( 1st `  A ) ,  0R >. ) )
 
Theorem0ncn 7893 The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. See also cnm 7894 which is a related property. (Contributed by NM, 2-May-1996.)
 |- 
 -.  (/)  e.  CC
 
Theoremcnm 7894* A complex number is an inhabited set. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by Jim Kingdon, 23-Oct-2023.) (New usage is discouraged.)
 |-  ( A  e.  CC  ->  E. x  x  e.  A )
 
Theoremltrelre 7895 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
 |- 
 <RR  C_  ( RR  X.  RR )
 
Theoremaddcnsr 7896 Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  +  <. C ,  D >. )  =  <. ( A  +R  C ) ,  ( B  +R  D ) >. )
 
Theoremmulcnsr 7897 Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.)
 |-  ( ( ( A  e.  R.  /\  B  e.  R. )  /\  ( C  e.  R.  /\  D  e.  R. ) )  ->  ( <. A ,  B >.  x.  <. C ,  D >. )  =  <. ( ( A  .R  C )  +R  ( -1R  .R  ( B  .R  D ) ) ) ,  (
 ( B  .R  C )  +R  ( A  .R  D ) ) >. )
 
Theoremeqresr 7898 Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  A  e.  _V   =>    |-  ( <. A ,  0R >.  =  <. B ,  0R >. 
 <->  A  =  B )
 
Theoremaddresr 7899 Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  +  <. B ,  0R >. )  =  <. ( A  +R  B ) ,  0R >. )
 
Theoremmulresr 7900 Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.)
 |-  ( ( A  e.  R. 
 /\  B  e.  R. )  ->  ( <. A ,  0R >.  x.  <. B ,  0R >. )  =  <. ( A  .R  B ) ,  0R >. )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15644
  Copyright terms: Public domain < Previous  Next >