| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltresr | Unicode version | ||
| Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltresr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelre 7917 |
. . . 4
| |
| 2 | 1 | brel 4716 |
. . 3
|
| 3 | opelreal 7911 |
. . . 4
| |
| 4 | opelreal 7911 |
. . . 4
| |
| 5 | 3, 4 | anbi12i 460 |
. . 3
|
| 6 | 2, 5 | sylib 122 |
. 2
|
| 7 | ltrelsr 7822 |
. . 3
| |
| 8 | 7 | brel 4716 |
. 2
|
| 9 | eleq1 2259 |
. . . . . . . . 9
| |
| 10 | 9 | anbi1d 465 |
. . . . . . . 8
|
| 11 | eqeq1 2203 |
. . . . . . . . . . 11
| |
| 12 | 11 | anbi1d 465 |
. . . . . . . . . 10
|
| 13 | 12 | anbi1d 465 |
. . . . . . . . 9
|
| 14 | 13 | 2exbidv 1882 |
. . . . . . . 8
|
| 15 | 10, 14 | anbi12d 473 |
. . . . . . 7
|
| 16 | eleq1 2259 |
. . . . . . . . 9
| |
| 17 | 16 | anbi2d 464 |
. . . . . . . 8
|
| 18 | eqeq1 2203 |
. . . . . . . . . . 11
| |
| 19 | 18 | anbi2d 464 |
. . . . . . . . . 10
|
| 20 | 19 | anbi1d 465 |
. . . . . . . . 9
|
| 21 | 20 | 2exbidv 1882 |
. . . . . . . 8
|
| 22 | 17, 21 | anbi12d 473 |
. . . . . . 7
|
| 23 | df-lt 7909 |
. . . . . . 7
| |
| 24 | 15, 22, 23 | brabg 4304 |
. . . . . 6
|
| 25 | 24 | bianabs 611 |
. . . . 5
|
| 26 | vex 2766 |
. . . . . . . . . . 11
| |
| 27 | 26 | eqresr 7920 |
. . . . . . . . . 10
|
| 28 | eqcom 2198 |
. . . . . . . . . 10
| |
| 29 | eqcom 2198 |
. . . . . . . . . 10
| |
| 30 | 27, 28, 29 | 3bitr4i 212 |
. . . . . . . . 9
|
| 31 | vex 2766 |
. . . . . . . . . . 11
| |
| 32 | 31 | eqresr 7920 |
. . . . . . . . . 10
|
| 33 | eqcom 2198 |
. . . . . . . . . 10
| |
| 34 | eqcom 2198 |
. . . . . . . . . 10
| |
| 35 | 32, 33, 34 | 3bitr4i 212 |
. . . . . . . . 9
|
| 36 | 30, 35 | anbi12i 460 |
. . . . . . . 8
|
| 37 | 26, 31 | opth2 4274 |
. . . . . . . 8
|
| 38 | 36, 37 | bitr4i 187 |
. . . . . . 7
|
| 39 | 38 | anbi1i 458 |
. . . . . 6
|
| 40 | 39 | 2exbii 1620 |
. . . . 5
|
| 41 | 25, 40 | bitrdi 196 |
. . . 4
|
| 42 | 3, 4, 41 | syl2anbr 292 |
. . 3
|
| 43 | breq12 4039 |
. . . 4
| |
| 44 | 43 | copsex2g 4280 |
. . 3
|
| 45 | 42, 44 | bitrd 188 |
. 2
|
| 46 | 6, 8, 45 | pm5.21nii 705 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-inp 7550 df-i1p 7551 df-enr 7810 df-nr 7811 df-ltr 7814 df-0r 7815 df-r 7906 df-lt 7909 |
| This theorem is referenced by: ltresr2 7924 pitoregt0 7933 ltrennb 7938 ax0lt1 7960 axprecex 7964 axpre-ltirr 7966 axpre-ltwlin 7967 axpre-lttrn 7968 axpre-apti 7969 axpre-ltadd 7970 axpre-mulgt0 7971 axpre-mulext 7972 axarch 7975 axcaucvglemcau 7982 axcaucvglemres 7983 axpre-suploclemres 7985 |
| Copyright terms: Public domain | W3C validator |