ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltresr Unicode version

Theorem ltresr 7813
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
ltresr  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )

Proof of Theorem ltresr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 7807 . . . 4  |-  <RR  C_  ( RR  X.  RR )
21brel 4672 . . 3  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( <. A ,  0R >.  e.  RR  /\ 
<. B ,  0R >.  e.  RR ) )
3 opelreal 7801 . . . 4  |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
4 opelreal 7801 . . . 4  |-  ( <. B ,  0R >.  e.  RR  <->  B  e.  R. )
53, 4anbi12i 460 . . 3  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  <-> 
( A  e.  R.  /\  B  e.  R. )
)
62, 5sylib 122 . 2  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( A  e.  R.  /\  B  e. 
R. ) )
7 ltrelsr 7712 . . 3  |-  <R  C_  ( R.  X.  R. )
87brel 4672 . 2  |-  ( A 
<R  B  ->  ( A  e.  R.  /\  B  e.  R. ) )
9 eleq1 2238 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( x  e.  RR  <->  <. A ,  0R >.  e.  RR ) )
109anbi1d 465 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  e.  RR  /\  y  e.  RR )  <->  ( <. A ,  0R >.  e.  RR  /\  y  e.  RR ) ) )
11 eqeq1 2182 . . . . . . . . . . 11  |-  ( x  =  <. A ,  0R >.  ->  ( x  = 
<. z ,  0R >.  <->  <. A ,  0R >.  =  <. z ,  0R >. )
)
1211anbi1d 465 . . . . . . . . . 10  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. ) ) )
1312anbi1d 465 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
14132exbidv 1866 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
1510, 14anbi12d 473 . . . . . . 7  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
16 eleq1 2238 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( y  e.  RR  <->  <. B ,  0R >.  e.  RR ) )
1716anbi2d 464 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  <-> 
( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR ) ) )
18 eqeq1 2182 . . . . . . . . . . 11  |-  ( y  =  <. B ,  0R >.  ->  ( y  = 
<. w ,  0R >.  <->  <. B ,  0R >.  =  <. w ,  0R >. )
)
1918anbi2d 464 . . . . . . . . . 10  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. ) ) )
2019anbi1d 465 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  /\  z  <R  w
) ) )
21202exbidv 1866 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
2217, 21anbi12d 473 . . . . . . 7  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
23 df-lt 7799 . . . . . . 7  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
2415, 22, 23brabg 4263 . . . . . 6  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <-> 
( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
2524bianabs 611 . . . . 5  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
26 vex 2738 . . . . . . . . . . 11  |-  z  e. 
_V
2726eqresr 7810 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  = 
<. A ,  0R >.  <->  z  =  A )
28 eqcom 2177 . . . . . . . . . 10  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  <. z ,  0R >.  =  <. A ,  0R >. )
29 eqcom 2177 . . . . . . . . . 10  |-  ( A  =  z  <->  z  =  A )
3027, 28, 293bitr4i 212 . . . . . . . . 9  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  A  =  z )
31 vex 2738 . . . . . . . . . . 11  |-  w  e. 
_V
3231eqresr 7810 . . . . . . . . . 10  |-  ( <.
w ,  0R >.  = 
<. B ,  0R >.  <->  w  =  B )
33 eqcom 2177 . . . . . . . . . 10  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  <. w ,  0R >.  =  <. B ,  0R >. )
34 eqcom 2177 . . . . . . . . . 10  |-  ( B  =  w  <->  w  =  B )
3532, 33, 343bitr4i 212 . . . . . . . . 9  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  B  =  w )
3630, 35anbi12i 460 . . . . . . . 8  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <-> 
( A  =  z  /\  B  =  w ) )
3726, 31opth2 4234 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. z ,  w >.  <->  ( A  =  z  /\  B  =  w )
)
3836, 37bitr4i 187 . . . . . . 7  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <->  <. A ,  B >.  = 
<. z ,  w >. )
3938anbi1i 458 . . . . . 6  |-  ( ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
40392exbii 1604 . . . . 5  |-  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
4125, 40bitrdi 196 . . . 4  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
423, 4, 41syl2anbr 292 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
43 breq12 4003 . . . 4  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z  <R  w  <->  A 
<R  B ) )
4443copsex2g 4240 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w )  <->  A  <R  B ) )
4542, 44bitrd 188 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <-> 
A  <R  B ) )
466, 8, 45pm5.21nii 704 1  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1353   E.wex 1490    e. wcel 2146   <.cop 3592   class class class wbr 3998   R.cnr 7271   0Rc0r 7272    <R cltr 7277   RRcr 7785    <RR cltrr 7790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-eprel 4283  df-id 4287  df-po 4290  df-iso 4291  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-ov 5868  df-oprab 5869  df-mpo 5870  df-1st 6131  df-2nd 6132  df-recs 6296  df-irdg 6361  df-1o 6407  df-oadd 6411  df-omul 6412  df-er 6525  df-ec 6527  df-qs 6531  df-ni 7278  df-pli 7279  df-mi 7280  df-lti 7281  df-plpq 7318  df-mpq 7319  df-enq 7321  df-nqqs 7322  df-plqqs 7323  df-mqqs 7324  df-1nqqs 7325  df-rq 7326  df-ltnqqs 7327  df-inp 7440  df-i1p 7441  df-enr 7700  df-nr 7701  df-ltr 7704  df-0r 7705  df-r 7796  df-lt 7799
This theorem is referenced by:  ltresr2  7814  pitoregt0  7823  ltrennb  7828  ax0lt1  7850  axprecex  7854  axpre-ltirr  7856  axpre-ltwlin  7857  axpre-lttrn  7858  axpre-apti  7859  axpre-ltadd  7860  axpre-mulgt0  7861  axpre-mulext  7862  axarch  7865  axcaucvglemcau  7872  axcaucvglemres  7873  axpre-suploclemres  7875
  Copyright terms: Public domain W3C validator