| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltresr | Unicode version | ||
| Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
| Ref | Expression |
|---|---|
| ltresr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltrelre 7981 |
. . . 4
| |
| 2 | 1 | brel 4745 |
. . 3
|
| 3 | opelreal 7975 |
. . . 4
| |
| 4 | opelreal 7975 |
. . . 4
| |
| 5 | 3, 4 | anbi12i 460 |
. . 3
|
| 6 | 2, 5 | sylib 122 |
. 2
|
| 7 | ltrelsr 7886 |
. . 3
| |
| 8 | 7 | brel 4745 |
. 2
|
| 9 | eleq1 2270 |
. . . . . . . . 9
| |
| 10 | 9 | anbi1d 465 |
. . . . . . . 8
|
| 11 | eqeq1 2214 |
. . . . . . . . . . 11
| |
| 12 | 11 | anbi1d 465 |
. . . . . . . . . 10
|
| 13 | 12 | anbi1d 465 |
. . . . . . . . 9
|
| 14 | 13 | 2exbidv 1892 |
. . . . . . . 8
|
| 15 | 10, 14 | anbi12d 473 |
. . . . . . 7
|
| 16 | eleq1 2270 |
. . . . . . . . 9
| |
| 17 | 16 | anbi2d 464 |
. . . . . . . 8
|
| 18 | eqeq1 2214 |
. . . . . . . . . . 11
| |
| 19 | 18 | anbi2d 464 |
. . . . . . . . . 10
|
| 20 | 19 | anbi1d 465 |
. . . . . . . . 9
|
| 21 | 20 | 2exbidv 1892 |
. . . . . . . 8
|
| 22 | 17, 21 | anbi12d 473 |
. . . . . . 7
|
| 23 | df-lt 7973 |
. . . . . . 7
| |
| 24 | 15, 22, 23 | brabg 4333 |
. . . . . 6
|
| 25 | 24 | bianabs 611 |
. . . . 5
|
| 26 | vex 2779 |
. . . . . . . . . . 11
| |
| 27 | 26 | eqresr 7984 |
. . . . . . . . . 10
|
| 28 | eqcom 2209 |
. . . . . . . . . 10
| |
| 29 | eqcom 2209 |
. . . . . . . . . 10
| |
| 30 | 27, 28, 29 | 3bitr4i 212 |
. . . . . . . . 9
|
| 31 | vex 2779 |
. . . . . . . . . . 11
| |
| 32 | 31 | eqresr 7984 |
. . . . . . . . . 10
|
| 33 | eqcom 2209 |
. . . . . . . . . 10
| |
| 34 | eqcom 2209 |
. . . . . . . . . 10
| |
| 35 | 32, 33, 34 | 3bitr4i 212 |
. . . . . . . . 9
|
| 36 | 30, 35 | anbi12i 460 |
. . . . . . . 8
|
| 37 | 26, 31 | opth2 4302 |
. . . . . . . 8
|
| 38 | 36, 37 | bitr4i 187 |
. . . . . . 7
|
| 39 | 38 | anbi1i 458 |
. . . . . 6
|
| 40 | 39 | 2exbii 1630 |
. . . . 5
|
| 41 | 25, 40 | bitrdi 196 |
. . . 4
|
| 42 | 3, 4, 41 | syl2anbr 292 |
. . 3
|
| 43 | breq12 4064 |
. . . 4
| |
| 44 | 43 | copsex2g 4308 |
. . 3
|
| 45 | 42, 44 | bitrd 188 |
. 2
|
| 46 | 6, 8, 45 | pm5.21nii 706 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-eprel 4354 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-1o 6525 df-oadd 6529 df-omul 6530 df-er 6643 df-ec 6645 df-qs 6649 df-ni 7452 df-pli 7453 df-mi 7454 df-lti 7455 df-plpq 7492 df-mpq 7493 df-enq 7495 df-nqqs 7496 df-plqqs 7497 df-mqqs 7498 df-1nqqs 7499 df-rq 7500 df-ltnqqs 7501 df-inp 7614 df-i1p 7615 df-enr 7874 df-nr 7875 df-ltr 7878 df-0r 7879 df-r 7970 df-lt 7973 |
| This theorem is referenced by: ltresr2 7988 pitoregt0 7997 ltrennb 8002 ax0lt1 8024 axprecex 8028 axpre-ltirr 8030 axpre-ltwlin 8031 axpre-lttrn 8032 axpre-apti 8033 axpre-ltadd 8034 axpre-mulgt0 8035 axpre-mulext 8036 axarch 8039 axcaucvglemcau 8046 axcaucvglemres 8047 axpre-suploclemres 8049 |
| Copyright terms: Public domain | W3C validator |