ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltresr Unicode version

Theorem ltresr 7526
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
ltresr  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )

Proof of Theorem ltresr
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltrelre 7520 . . . 4  |-  <RR  C_  ( RR  X.  RR )
21brel 4529 . . 3  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( <. A ,  0R >.  e.  RR  /\ 
<. B ,  0R >.  e.  RR ) )
3 opelreal 7515 . . . 4  |-  ( <. A ,  0R >.  e.  RR  <->  A  e.  R. )
4 opelreal 7515 . . . 4  |-  ( <. B ,  0R >.  e.  RR  <->  B  e.  R. )
53, 4anbi12i 451 . . 3  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  <-> 
( A  e.  R.  /\  B  e.  R. )
)
62, 5sylib 121 . 2  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >.  ->  ( A  e.  R.  /\  B  e. 
R. ) )
7 ltrelsr 7434 . . 3  |-  <R  C_  ( R.  X.  R. )
87brel 4529 . 2  |-  ( A 
<R  B  ->  ( A  e.  R.  /\  B  e.  R. ) )
9 eleq1 2162 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( x  e.  RR  <->  <. A ,  0R >.  e.  RR ) )
109anbi1d 456 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  e.  RR  /\  y  e.  RR )  <->  ( <. A ,  0R >.  e.  RR  /\  y  e.  RR ) ) )
11 eqeq1 2106 . . . . . . . . . . 11  |-  ( x  =  <. A ,  0R >.  ->  ( x  = 
<. z ,  0R >.  <->  <. A ,  0R >.  =  <. z ,  0R >. )
)
1211anbi1d 456 . . . . . . . . . 10  |-  ( x  =  <. A ,  0R >.  ->  ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. ) ) )
1312anbi1d 456 . . . . . . . . 9  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
14132exbidv 1807 . . . . . . . 8  |-  ( x  =  <. A ,  0R >.  ->  ( E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
1510, 14anbi12d 460 . . . . . . 7  |-  ( x  =  <. A ,  0R >.  ->  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w
( ( x  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
16 eleq1 2162 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( y  e.  RR  <->  <. B ,  0R >.  e.  RR ) )
1716anbi2d 455 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  e.  RR  /\  y  e.  RR )  <-> 
( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR ) ) )
18 eqeq1 2106 . . . . . . . . . . 11  |-  ( y  =  <. B ,  0R >.  ->  ( y  = 
<. w ,  0R >.  <->  <. B ,  0R >.  =  <. w ,  0R >. )
)
1918anbi2d 455 . . . . . . . . . 10  |-  ( y  =  <. B ,  0R >.  ->  ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  <->  ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. ) ) )
2019anbi1d 456 . . . . . . . . 9  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( ( <. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  /\  z  <R  w
) ) )
21202exbidv 1807 . . . . . . . 8  |-  ( y  =  <. B ,  0R >.  ->  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
2217, 21anbi12d 460 . . . . . . 7  |-  ( y  =  <. B ,  0R >.  ->  ( ( (
<. A ,  0R >.  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) )  <->  ( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
23 df-lt 7513 . . . . . . 7  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
2415, 22, 23brabg 4129 . . . . . 6  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <-> 
( ( <. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  /\  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) ) )
2524bianabs 581 . . . . 5  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w ) ) )
26 vex 2644 . . . . . . . . . . 11  |-  z  e. 
_V
2726eqresr 7523 . . . . . . . . . 10  |-  ( <.
z ,  0R >.  = 
<. A ,  0R >.  <->  z  =  A )
28 eqcom 2102 . . . . . . . . . 10  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  <. z ,  0R >.  =  <. A ,  0R >. )
29 eqcom 2102 . . . . . . . . . 10  |-  ( A  =  z  <->  z  =  A )
3027, 28, 293bitr4i 211 . . . . . . . . 9  |-  ( <. A ,  0R >.  =  <. z ,  0R >.  <->  A  =  z )
31 vex 2644 . . . . . . . . . . 11  |-  w  e. 
_V
3231eqresr 7523 . . . . . . . . . 10  |-  ( <.
w ,  0R >.  = 
<. B ,  0R >.  <->  w  =  B )
33 eqcom 2102 . . . . . . . . . 10  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  <. w ,  0R >.  =  <. B ,  0R >. )
34 eqcom 2102 . . . . . . . . . 10  |-  ( B  =  w  <->  w  =  B )
3532, 33, 343bitr4i 211 . . . . . . . . 9  |-  ( <. B ,  0R >.  =  <. w ,  0R >.  <->  B  =  w )
3630, 35anbi12i 451 . . . . . . . 8  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <-> 
( A  =  z  /\  B  =  w ) )
3726, 31opth2 4100 . . . . . . . 8  |-  ( <. A ,  B >.  = 
<. z ,  w >.  <->  ( A  =  z  /\  B  =  w )
)
3836, 37bitr4i 186 . . . . . . 7  |-  ( (
<. A ,  0R >.  = 
<. z ,  0R >.  /\ 
<. B ,  0R >.  = 
<. w ,  0R >. )  <->  <. A ,  B >.  = 
<. z ,  w >. )
3938anbi1i 449 . . . . . 6  |-  ( ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
40392exbii 1553 . . . . 5  |-  ( E. z E. w ( ( <. A ,  0R >.  =  <. z ,  0R >.  /\  <. B ,  0R >.  =  <. w ,  0R >. )  /\  z  <R  w )  <->  E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w ) )
4125, 40syl6bb 195 . . . 4  |-  ( (
<. A ,  0R >.  e.  RR  /\  <. B ,  0R >.  e.  RR )  ->  ( <. A ,  0R >.  <RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
423, 4, 41syl2anbr 288 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <->  E. z E. w (
<. A ,  B >.  = 
<. z ,  w >.  /\  z  <R  w )
) )
43 breq12 3880 . . . 4  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z  <R  w  <->  A 
<R  B ) )
4443copsex2g 4106 . . 3  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( E. z E. w ( <. A ,  B >.  =  <. z ,  w >.  /\  z  <R  w )  <->  A  <R  B ) )
4542, 44bitrd 187 . 2  |-  ( ( A  e.  R.  /\  B  e.  R. )  ->  ( <. A ,  0R >. 
<RR  <. B ,  0R >.  <-> 
A  <R  B ) )
466, 8, 45pm5.21nii 661 1  |-  ( <. A ,  0R >.  <RR  <. B ,  0R >. 
<->  A  <R  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1299   E.wex 1436    e. wcel 1448   <.cop 3477   class class class wbr 3875   R.cnr 7006   0Rc0r 7007    <R cltr 7012   RRcr 7499    <RR cltrr 7504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-reu 2382  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-eprel 4149  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-irdg 6197  df-1o 6243  df-oadd 6247  df-omul 6248  df-er 6359  df-ec 6361  df-qs 6365  df-ni 7013  df-pli 7014  df-mi 7015  df-lti 7016  df-plpq 7053  df-mpq 7054  df-enq 7056  df-nqqs 7057  df-plqqs 7058  df-mqqs 7059  df-1nqqs 7060  df-rq 7061  df-ltnqqs 7062  df-inp 7175  df-i1p 7176  df-enr 7422  df-nr 7423  df-ltr 7426  df-0r 7427  df-r 7510  df-lt 7513
This theorem is referenced by:  ltresr2  7527  pitoregt0  7536  ltrennb  7541  ax0lt1  7561  axprecex  7565  axpre-ltirr  7567  axpre-ltwlin  7568  axpre-lttrn  7569  axpre-apti  7570  axpre-ltadd  7571  axpre-mulgt0  7572  axpre-mulext  7573  axarch  7576  axcaucvglemcau  7583  axcaucvglemres  7584
  Copyright terms: Public domain W3C validator