Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltresr | Unicode version |
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
ltresr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelre 7774 | . . . 4 | |
2 | 1 | brel 4656 | . . 3 |
3 | opelreal 7768 | . . . 4 | |
4 | opelreal 7768 | . . . 4 | |
5 | 3, 4 | anbi12i 456 | . . 3 |
6 | 2, 5 | sylib 121 | . 2 |
7 | ltrelsr 7679 | . . 3 | |
8 | 7 | brel 4656 | . 2 |
9 | eleq1 2229 | . . . . . . . . 9 | |
10 | 9 | anbi1d 461 | . . . . . . . 8 |
11 | eqeq1 2172 | . . . . . . . . . . 11 | |
12 | 11 | anbi1d 461 | . . . . . . . . . 10 |
13 | 12 | anbi1d 461 | . . . . . . . . 9 |
14 | 13 | 2exbidv 1856 | . . . . . . . 8 |
15 | 10, 14 | anbi12d 465 | . . . . . . 7 |
16 | eleq1 2229 | . . . . . . . . 9 | |
17 | 16 | anbi2d 460 | . . . . . . . 8 |
18 | eqeq1 2172 | . . . . . . . . . . 11 | |
19 | 18 | anbi2d 460 | . . . . . . . . . 10 |
20 | 19 | anbi1d 461 | . . . . . . . . 9 |
21 | 20 | 2exbidv 1856 | . . . . . . . 8 |
22 | 17, 21 | anbi12d 465 | . . . . . . 7 |
23 | df-lt 7766 | . . . . . . 7 | |
24 | 15, 22, 23 | brabg 4247 | . . . . . 6 |
25 | 24 | bianabs 601 | . . . . 5 |
26 | vex 2729 | . . . . . . . . . . 11 | |
27 | 26 | eqresr 7777 | . . . . . . . . . 10 |
28 | eqcom 2167 | . . . . . . . . . 10 | |
29 | eqcom 2167 | . . . . . . . . . 10 | |
30 | 27, 28, 29 | 3bitr4i 211 | . . . . . . . . 9 |
31 | vex 2729 | . . . . . . . . . . 11 | |
32 | 31 | eqresr 7777 | . . . . . . . . . 10 |
33 | eqcom 2167 | . . . . . . . . . 10 | |
34 | eqcom 2167 | . . . . . . . . . 10 | |
35 | 32, 33, 34 | 3bitr4i 211 | . . . . . . . . 9 |
36 | 30, 35 | anbi12i 456 | . . . . . . . 8 |
37 | 26, 31 | opth2 4218 | . . . . . . . 8 |
38 | 36, 37 | bitr4i 186 | . . . . . . 7 |
39 | 38 | anbi1i 454 | . . . . . 6 |
40 | 39 | 2exbii 1594 | . . . . 5 |
41 | 25, 40 | bitrdi 195 | . . . 4 |
42 | 3, 4, 41 | syl2anbr 290 | . . 3 |
43 | breq12 3987 | . . . 4 | |
44 | 43 | copsex2g 4224 | . . 3 |
45 | 42, 44 | bitrd 187 | . 2 |
46 | 6, 8, 45 | pm5.21nii 694 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1343 wex 1480 wcel 2136 cop 3579 class class class wbr 3982 cnr 7238 c0r 7239 cltr 7244 cr 7752 cltrr 7757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-po 4274 df-iso 4275 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-rq 7293 df-ltnqqs 7294 df-inp 7407 df-i1p 7408 df-enr 7667 df-nr 7668 df-ltr 7671 df-0r 7672 df-r 7763 df-lt 7766 |
This theorem is referenced by: ltresr2 7781 pitoregt0 7790 ltrennb 7795 ax0lt1 7817 axprecex 7821 axpre-ltirr 7823 axpre-ltwlin 7824 axpre-lttrn 7825 axpre-apti 7826 axpre-ltadd 7827 axpre-mulgt0 7828 axpre-mulext 7829 axarch 7832 axcaucvglemcau 7839 axcaucvglemres 7840 axpre-suploclemres 7842 |
Copyright terms: Public domain | W3C validator |