Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltresr | Unicode version |
Description: Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
ltresr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltrelre 7795 | . . . 4 | |
2 | 1 | brel 4663 | . . 3 |
3 | opelreal 7789 | . . . 4 | |
4 | opelreal 7789 | . . . 4 | |
5 | 3, 4 | anbi12i 457 | . . 3 |
6 | 2, 5 | sylib 121 | . 2 |
7 | ltrelsr 7700 | . . 3 | |
8 | 7 | brel 4663 | . 2 |
9 | eleq1 2233 | . . . . . . . . 9 | |
10 | 9 | anbi1d 462 | . . . . . . . 8 |
11 | eqeq1 2177 | . . . . . . . . . . 11 | |
12 | 11 | anbi1d 462 | . . . . . . . . . 10 |
13 | 12 | anbi1d 462 | . . . . . . . . 9 |
14 | 13 | 2exbidv 1861 | . . . . . . . 8 |
15 | 10, 14 | anbi12d 470 | . . . . . . 7 |
16 | eleq1 2233 | . . . . . . . . 9 | |
17 | 16 | anbi2d 461 | . . . . . . . 8 |
18 | eqeq1 2177 | . . . . . . . . . . 11 | |
19 | 18 | anbi2d 461 | . . . . . . . . . 10 |
20 | 19 | anbi1d 462 | . . . . . . . . 9 |
21 | 20 | 2exbidv 1861 | . . . . . . . 8 |
22 | 17, 21 | anbi12d 470 | . . . . . . 7 |
23 | df-lt 7787 | . . . . . . 7 | |
24 | 15, 22, 23 | brabg 4254 | . . . . . 6 |
25 | 24 | bianabs 606 | . . . . 5 |
26 | vex 2733 | . . . . . . . . . . 11 | |
27 | 26 | eqresr 7798 | . . . . . . . . . 10 |
28 | eqcom 2172 | . . . . . . . . . 10 | |
29 | eqcom 2172 | . . . . . . . . . 10 | |
30 | 27, 28, 29 | 3bitr4i 211 | . . . . . . . . 9 |
31 | vex 2733 | . . . . . . . . . . 11 | |
32 | 31 | eqresr 7798 | . . . . . . . . . 10 |
33 | eqcom 2172 | . . . . . . . . . 10 | |
34 | eqcom 2172 | . . . . . . . . . 10 | |
35 | 32, 33, 34 | 3bitr4i 211 | . . . . . . . . 9 |
36 | 30, 35 | anbi12i 457 | . . . . . . . 8 |
37 | 26, 31 | opth2 4225 | . . . . . . . 8 |
38 | 36, 37 | bitr4i 186 | . . . . . . 7 |
39 | 38 | anbi1i 455 | . . . . . 6 |
40 | 39 | 2exbii 1599 | . . . . 5 |
41 | 25, 40 | bitrdi 195 | . . . 4 |
42 | 3, 4, 41 | syl2anbr 290 | . . 3 |
43 | breq12 3994 | . . . 4 | |
44 | 43 | copsex2g 4231 | . . 3 |
45 | 42, 44 | bitrd 187 | . 2 |
46 | 6, 8, 45 | pm5.21nii 699 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wceq 1348 wex 1485 wcel 2141 cop 3586 class class class wbr 3989 cnr 7259 c0r 7260 cltr 7265 cr 7773 cltrr 7778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-eprel 4274 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-irdg 6349 df-1o 6395 df-oadd 6399 df-omul 6400 df-er 6513 df-ec 6515 df-qs 6519 df-ni 7266 df-pli 7267 df-mi 7268 df-lti 7269 df-plpq 7306 df-mpq 7307 df-enq 7309 df-nqqs 7310 df-plqqs 7311 df-mqqs 7312 df-1nqqs 7313 df-rq 7314 df-ltnqqs 7315 df-inp 7428 df-i1p 7429 df-enr 7688 df-nr 7689 df-ltr 7692 df-0r 7693 df-r 7784 df-lt 7787 |
This theorem is referenced by: ltresr2 7802 pitoregt0 7811 ltrennb 7816 ax0lt1 7838 axprecex 7842 axpre-ltirr 7844 axpre-ltwlin 7845 axpre-lttrn 7846 axpre-apti 7847 axpre-ltadd 7848 axpre-mulgt0 7849 axpre-mulext 7850 axarch 7853 axcaucvglemcau 7860 axcaucvglemres 7861 axpre-suploclemres 7863 |
Copyright terms: Public domain | W3C validator |