ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelre Unicode version

Theorem ltrelre 7795
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
ltrelre  |-  <RR  C_  ( RR  X.  RR )

Proof of Theorem ltrelre
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lt 7787 . 2  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
2 opabssxp 4685 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }  C_  ( RR  X.  RR )
31, 2eqsstri 3179 1  |-  <RR  C_  ( RR  X.  RR )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348   E.wex 1485    e. wcel 2141    C_ wss 3121   <.cop 3586   class class class wbr 3989   {copab 4049    X. cxp 4609   0Rc0r 7260    <R cltr 7265   RRcr 7773    <RR cltrr 7778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-in 3127  df-ss 3134  df-opab 4051  df-xp 4617  df-lt 7787
This theorem is referenced by:  ltresr  7801
  Copyright terms: Public domain W3C validator