Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltrelre | Unicode version |
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
ltrelre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lt 7799 | . 2 | |
2 | opabssxp 4694 | . 2 | |
3 | 1, 2 | eqsstri 3185 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wceq 1353 wex 1490 wcel 2146 wss 3127 cop 3592 class class class wbr 3998 copab 4058 cxp 4618 c0r 7272 cltr 7277 cr 7785 cltrr 7790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-in 3133 df-ss 3140 df-opab 4060 df-xp 4626 df-lt 7799 |
This theorem is referenced by: ltresr 7813 |
Copyright terms: Public domain | W3C validator |