ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelre Unicode version

Theorem ltrelre 7774
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
ltrelre  |-  <RR  C_  ( RR  X.  RR )

Proof of Theorem ltrelre
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lt 7766 . 2  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
2 opabssxp 4678 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }  C_  ( RR  X.  RR )
31, 2eqsstri 3174 1  |-  <RR  C_  ( RR  X.  RR )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1343   E.wex 1480    e. wcel 2136    C_ wss 3116   <.cop 3579   class class class wbr 3982   {copab 4042    X. cxp 4602   0Rc0r 7239    <R cltr 7244   RRcr 7752    <RR cltrr 7757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-in 3122  df-ss 3129  df-opab 4044  df-xp 4610  df-lt 7766
This theorem is referenced by:  ltresr  7780
  Copyright terms: Public domain W3C validator