ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltrelre Unicode version

Theorem ltrelre 7807
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.)
Assertion
Ref Expression
ltrelre  |-  <RR  C_  ( RR  X.  RR )

Proof of Theorem ltrelre
Dummy variables  x  y  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-lt 7799 . 2  |-  <RR  =  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }
2 opabssxp 4694 . 2  |-  { <. x ,  y >.  |  ( ( x  e.  RR  /\  y  e.  RR )  /\  E. z E. w ( ( x  =  <. z ,  0R >.  /\  y  =  <. w ,  0R >. )  /\  z  <R  w ) ) }  C_  ( RR  X.  RR )
31, 2eqsstri 3185 1  |-  <RR  C_  ( RR  X.  RR )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1353   E.wex 1490    e. wcel 2146    C_ wss 3127   <.cop 3592   class class class wbr 3998   {copab 4058    X. cxp 4618   0Rc0r 7272    <R cltr 7277   RRcr 7785    <RR cltrr 7790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-in 3133  df-ss 3140  df-opab 4060  df-xp 4626  df-lt 7799
This theorem is referenced by:  ltresr  7813
  Copyright terms: Public domain W3C validator