Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltrelre | Unicode version |
Description: 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) |
Ref | Expression |
---|---|
ltrelre |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lt 7766 | . 2 | |
2 | opabssxp 4678 | . 2 | |
3 | 1, 2 | eqsstri 3174 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wceq 1343 wex 1480 wcel 2136 wss 3116 cop 3579 class class class wbr 3982 copab 4042 cxp 4602 c0r 7239 cltr 7244 cr 7752 cltrr 7757 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-in 3122 df-ss 3129 df-opab 4044 df-xp 4610 df-lt 7766 |
This theorem is referenced by: ltresr 7780 |
Copyright terms: Public domain | W3C validator |