Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ressid2 | Unicode version |
Description: General behavior of trivial restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) (Revised by Jim Kingdon, 26-Jan-2023.) |
Ref | Expression |
---|---|
ressbas.r | ↾s |
ressbas.b |
Ref | Expression |
---|---|
ressid2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | . 2 ↾s | |
2 | simp2 988 | . . . . 5 | |
3 | 2 | elexd 2739 | . . . 4 |
4 | simp3 989 | . . . . 5 | |
5 | 4 | elexd 2739 | . . . 4 |
6 | simp1 987 | . . . . . 6 | |
7 | 6 | iftrued 3527 | . . . . 5 sSet |
8 | 7, 3 | eqeltrd 2243 | . . . 4 sSet |
9 | simpl 108 | . . . . . . . . 9 | |
10 | 9 | fveq2d 5490 | . . . . . . . 8 |
11 | ressbas.b | . . . . . . . 8 | |
12 | 10, 11 | eqtr4di 2217 | . . . . . . 7 |
13 | simpr 109 | . . . . . . 7 | |
14 | 12, 13 | sseq12d 3173 | . . . . . 6 |
15 | 13, 12 | ineq12d 3324 | . . . . . . . 8 |
16 | 15 | opeq2d 3765 | . . . . . . 7 |
17 | 9, 16 | oveq12d 5860 | . . . . . 6 sSet sSet |
18 | 14, 9, 17 | ifbieq12d 3546 | . . . . 5 sSet sSet |
19 | df-ress 12402 | . . . . 5 ↾s sSet | |
20 | 18, 19 | ovmpoga 5971 | . . . 4 sSet ↾s sSet |
21 | 3, 5, 8, 20 | syl3anc 1228 | . . 3 ↾s sSet |
22 | 21, 7 | eqtrd 2198 | . 2 ↾s |
23 | 1, 22 | syl5eq 2211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cvv 2726 cin 3115 wss 3116 cif 3520 cop 3579 cfv 5188 (class class class)co 5842 cnx 12391 sSet csts 12392 cbs 12394 ↾s cress 12395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-ress 12402 |
This theorem is referenced by: ressid 12456 |
Copyright terms: Public domain | W3C validator |