Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ressval2 | Unicode version |
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressbas.r | ↾s |
ressbas.b |
Ref | Expression |
---|---|
ressval2 | sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | . 2 ↾s | |
2 | simp2 993 | . . . . 5 | |
3 | 2 | elexd 2743 | . . . 4 |
4 | simp3 994 | . . . . 5 | |
5 | 4 | elexd 2743 | . . . 4 |
6 | simp1 992 | . . . . . 6 | |
7 | 6 | iffalsed 3536 | . . . . 5 sSet sSet |
8 | basendxnn 12471 | . . . . . . 7 | |
9 | 8 | a1i 9 | . . . . . 6 |
10 | inex1g 4125 | . . . . . . 7 | |
11 | 4, 10 | syl 14 | . . . . . 6 |
12 | setsex 12448 | . . . . . 6 sSet | |
13 | 2, 9, 11, 12 | syl3anc 1233 | . . . . 5 sSet |
14 | 7, 13 | eqeltrd 2247 | . . . 4 sSet |
15 | simpl 108 | . . . . . . . . 9 | |
16 | 15 | fveq2d 5500 | . . . . . . . 8 |
17 | ressbas.b | . . . . . . . 8 | |
18 | 16, 17 | eqtr4di 2221 | . . . . . . 7 |
19 | simpr 109 | . . . . . . 7 | |
20 | 18, 19 | sseq12d 3178 | . . . . . 6 |
21 | 19, 18 | ineq12d 3329 | . . . . . . . 8 |
22 | 21 | opeq2d 3772 | . . . . . . 7 |
23 | 15, 22 | oveq12d 5871 | . . . . . 6 sSet sSet |
24 | 20, 15, 23 | ifbieq12d 3552 | . . . . 5 sSet sSet |
25 | df-ress 12424 | . . . . 5 ↾s sSet | |
26 | 24, 25 | ovmpoga 5982 | . . . 4 sSet ↾s sSet |
27 | 3, 5, 14, 26 | syl3anc 1233 | . . 3 ↾s sSet |
28 | 27, 7 | eqtrd 2203 | . 2 ↾s sSet |
29 | 1, 28 | eqtrid 2215 | 1 sSet |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 cvv 2730 cin 3120 wss 3121 cif 3526 cop 3586 cfv 5198 (class class class)co 5853 cn 8878 cnx 12413 sSet csts 12414 cbs 12416 ↾s cress 12417 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 df-inn 8879 df-ndx 12419 df-slot 12420 df-base 12422 df-sets 12423 df-ress 12424 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |