ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval2 Unicode version

Theorem ressval2 11617
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressval2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )

Proof of Theorem ressval2
Dummy variables  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2  |-  R  =  ( Ws  A )
2 simp2 945 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  W  e.  X )
32elexd 2635 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  W  e.  _V )
4 simp3 946 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  A  e.  Y )
54elexd 2635 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  A  e.  _V )
6 simp1 944 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  -.  B  C_  A )
76iffalsed 3409 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  if ( B  C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) )
8 basendxnn 11612 . . . . . . 7  |-  ( Base `  ndx )  e.  NN
98a1i 9 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Base ` 
ndx )  e.  NN )
10 inex1g 3983 . . . . . . 7  |-  ( A  e.  Y  ->  ( A  i^i  B )  e. 
_V )
114, 10syl 14 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( A  i^i  B )  e.  _V )
12 setsex 11589 . . . . . 6  |-  ( ( W  e.  X  /\  ( Base `  ndx )  e.  NN  /\  ( A  i^i  B )  e. 
_V )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )  e.  _V )
132, 9, 11, 12syl3anc 1175 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. )  e.  _V )
147, 13eqeltrd 2165 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  if ( B  C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )
15 simpl 108 . . . . . . . . 9  |-  ( ( w  =  W  /\  a  =  A )  ->  w  =  W )
1615fveq2d 5324 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  ( Base `  W ) )
17 ressbas.b . . . . . . . 8  |-  B  =  ( Base `  W
)
1816, 17syl6eqr 2139 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  B )
19 simpr 109 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  a  =  A )
2018, 19sseq12d 3058 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( ( Base `  w
)  C_  a  <->  B  C_  A
) )
2119, 18ineq12d 3205 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( a  i^i  ( Base `  w ) )  =  ( A  i^i  B ) )
2221opeq2d 3637 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  -> 
<. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. )
2315, 22oveq12d 5686 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
2420, 15, 23ifbieq12d 3423 . . . . 5  |-  ( ( w  =  W  /\  a  =  A )  ->  if ( ( Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >. )
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
25 df-ress 11565 . . . . 5  |-s  =  ( w  e.  _V ,  a  e. 
_V  |->  if ( (
Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. ) ) )
2624, 25ovmpt2ga 5790 . . . 4  |-  ( ( W  e.  _V  /\  A  e.  _V  /\  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
273, 5, 14, 26syl3anc 1175 . . 3  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Ws  A
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
2827, 7eqtrd 2121 . 2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Ws  A
)  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
291, 28syl5eq 2133 1  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 925    = wceq 1290    e. wcel 1439   _Vcvv 2622    i^i cin 3001    C_ wss 3002   ifcif 3399   <.cop 3455   ` cfv 5030  (class class class)co 5668   NNcn 8485   ndxcnx 11554   sSet csts 11555   Basecbs 11557   ↾s cress 11558
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3965  ax-pow 4017  ax-pr 4047  ax-un 4271  ax-setind 4368  ax-cnex 7499  ax-resscn 7500  ax-1re 7502  ax-addrcl 7505
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-rab 2369  df-v 2624  df-sbc 2844  df-dif 3004  df-un 3006  df-in 3008  df-ss 3015  df-if 3400  df-pw 3437  df-sn 3458  df-pr 3459  df-op 3461  df-uni 3662  df-int 3697  df-br 3854  df-opab 3908  df-mpt 3909  df-id 4131  df-xp 4460  df-rel 4461  df-cnv 4462  df-co 4463  df-dm 4464  df-rn 4465  df-res 4466  df-iota 4995  df-fun 5032  df-fv 5038  df-ov 5671  df-oprab 5672  df-mpt2 5673  df-inn 8486  df-ndx 11560  df-slot 11561  df-base 11563  df-sets 11564  df-ress 11565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator