ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval2 Unicode version

Theorem ressval2 12058
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressval2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )

Proof of Theorem ressval2
Dummy variables  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2  |-  R  =  ( Ws  A )
2 simp2 983 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  W  e.  X )
32elexd 2702 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  W  e.  _V )
4 simp3 984 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  A  e.  Y )
54elexd 2702 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  A  e.  _V )
6 simp1 982 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  -.  B  C_  A )
76iffalsed 3489 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  if ( B  C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) )
8 basendxnn 12053 . . . . . . 7  |-  ( Base `  ndx )  e.  NN
98a1i 9 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Base ` 
ndx )  e.  NN )
10 inex1g 4072 . . . . . . 7  |-  ( A  e.  Y  ->  ( A  i^i  B )  e. 
_V )
114, 10syl 14 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( A  i^i  B )  e.  _V )
12 setsex 12030 . . . . . 6  |-  ( ( W  e.  X  /\  ( Base `  ndx )  e.  NN  /\  ( A  i^i  B )  e. 
_V )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )  e.  _V )
132, 9, 11, 12syl3anc 1217 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. )  e.  _V )
147, 13eqeltrd 2217 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  if ( B  C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )
15 simpl 108 . . . . . . . . 9  |-  ( ( w  =  W  /\  a  =  A )  ->  w  =  W )
1615fveq2d 5433 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  ( Base `  W ) )
17 ressbas.b . . . . . . . 8  |-  B  =  ( Base `  W
)
1816, 17eqtr4di 2191 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  B )
19 simpr 109 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  a  =  A )
2018, 19sseq12d 3133 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( ( Base `  w
)  C_  a  <->  B  C_  A
) )
2119, 18ineq12d 3283 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( a  i^i  ( Base `  w ) )  =  ( A  i^i  B ) )
2221opeq2d 3720 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  -> 
<. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. )
2315, 22oveq12d 5800 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
2420, 15, 23ifbieq12d 3503 . . . . 5  |-  ( ( w  =  W  /\  a  =  A )  ->  if ( ( Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >. )
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
25 df-ress 12006 . . . . 5  |-s  =  ( w  e.  _V ,  a  e. 
_V  |->  if ( (
Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. ) ) )
2624, 25ovmpoga 5908 . . . 4  |-  ( ( W  e.  _V  /\  A  e.  _V  /\  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
273, 5, 14, 26syl3anc 1217 . . 3  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Ws  A
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
2827, 7eqtrd 2173 . 2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Ws  A
)  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
291, 28syl5eq 2185 1  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481   _Vcvv 2689    i^i cin 3075    C_ wss 3076   ifcif 3479   <.cop 3535   ` cfv 5131  (class class class)co 5782   NNcn 8744   ndxcnx 11995   sSet csts 11996   Basecbs 11998   ↾s cress 11999
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1re 7738  ax-addrcl 7741
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-iota 5096  df-fun 5133  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-inn 8745  df-ndx 12001  df-slot 12002  df-base 12004  df-sets 12005  df-ress 12006
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator