Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ressval2 | Unicode version |
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.) |
Ref | Expression |
---|---|
ressbas.r | ↾s |
ressbas.b |
Ref | Expression |
---|---|
ressval2 | sSet |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressbas.r | . 2 ↾s | |
2 | simp2 988 | . . . . 5 | |
3 | 2 | elexd 2739 | . . . 4 |
4 | simp3 989 | . . . . 5 | |
5 | 4 | elexd 2739 | . . . 4 |
6 | simp1 987 | . . . . . 6 | |
7 | 6 | iffalsed 3530 | . . . . 5 sSet sSet |
8 | basendxnn 12449 | . . . . . . 7 | |
9 | 8 | a1i 9 | . . . . . 6 |
10 | inex1g 4118 | . . . . . . 7 | |
11 | 4, 10 | syl 14 | . . . . . 6 |
12 | setsex 12426 | . . . . . 6 sSet | |
13 | 2, 9, 11, 12 | syl3anc 1228 | . . . . 5 sSet |
14 | 7, 13 | eqeltrd 2243 | . . . 4 sSet |
15 | simpl 108 | . . . . . . . . 9 | |
16 | 15 | fveq2d 5490 | . . . . . . . 8 |
17 | ressbas.b | . . . . . . . 8 | |
18 | 16, 17 | eqtr4di 2217 | . . . . . . 7 |
19 | simpr 109 | . . . . . . 7 | |
20 | 18, 19 | sseq12d 3173 | . . . . . 6 |
21 | 19, 18 | ineq12d 3324 | . . . . . . . 8 |
22 | 21 | opeq2d 3765 | . . . . . . 7 |
23 | 15, 22 | oveq12d 5860 | . . . . . 6 sSet sSet |
24 | 20, 15, 23 | ifbieq12d 3546 | . . . . 5 sSet sSet |
25 | df-ress 12402 | . . . . 5 ↾s sSet | |
26 | 24, 25 | ovmpoga 5971 | . . . 4 sSet ↾s sSet |
27 | 3, 5, 14, 26 | syl3anc 1228 | . . 3 ↾s sSet |
28 | 27, 7 | eqtrd 2198 | . 2 ↾s sSet |
29 | 1, 28 | syl5eq 2211 | 1 sSet |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cvv 2726 cin 3115 wss 3116 cif 3520 cop 3579 cfv 5188 (class class class)co 5842 cn 8857 cnx 12391 sSet csts 12392 cbs 12394 ↾s cress 12395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-inn 8858 df-ndx 12397 df-slot 12398 df-base 12400 df-sets 12401 df-ress 12402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |