ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval2 Unicode version

Theorem ressval2 12455
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressval2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )

Proof of Theorem ressval2
Dummy variables  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2  |-  R  =  ( Ws  A )
2 simp2 988 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  W  e.  X )
32elexd 2739 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  W  e.  _V )
4 simp3 989 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  A  e.  Y )
54elexd 2739 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  A  e.  _V )
6 simp1 987 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  -.  B  C_  A )
76iffalsed 3530 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  if ( B  C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) )
8 basendxnn 12449 . . . . . . 7  |-  ( Base `  ndx )  e.  NN
98a1i 9 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Base ` 
ndx )  e.  NN )
10 inex1g 4118 . . . . . . 7  |-  ( A  e.  Y  ->  ( A  i^i  B )  e. 
_V )
114, 10syl 14 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( A  i^i  B )  e.  _V )
12 setsex 12426 . . . . . 6  |-  ( ( W  e.  X  /\  ( Base `  ndx )  e.  NN  /\  ( A  i^i  B )  e. 
_V )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )  e.  _V )
132, 9, 11, 12syl3anc 1228 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. )  e.  _V )
147, 13eqeltrd 2243 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  if ( B  C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )
15 simpl 108 . . . . . . . . 9  |-  ( ( w  =  W  /\  a  =  A )  ->  w  =  W )
1615fveq2d 5490 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  ( Base `  W ) )
17 ressbas.b . . . . . . . 8  |-  B  =  ( Base `  W
)
1816, 17eqtr4di 2217 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  B )
19 simpr 109 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  a  =  A )
2018, 19sseq12d 3173 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( ( Base `  w
)  C_  a  <->  B  C_  A
) )
2119, 18ineq12d 3324 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( a  i^i  ( Base `  w ) )  =  ( A  i^i  B ) )
2221opeq2d 3765 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  -> 
<. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. )
2315, 22oveq12d 5860 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
2420, 15, 23ifbieq12d 3546 . . . . 5  |-  ( ( w  =  W  /\  a  =  A )  ->  if ( ( Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >. )
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
25 df-ress 12402 . . . . 5  |-s  =  ( w  e.  _V ,  a  e. 
_V  |->  if ( (
Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. ) ) )
2624, 25ovmpoga 5971 . . . 4  |-  ( ( W  e.  _V  /\  A  e.  _V  /\  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
273, 5, 14, 26syl3anc 1228 . . 3  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Ws  A
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
2827, 7eqtrd 2198 . 2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Ws  A
)  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
291, 28syl5eq 2211 1  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 968    = wceq 1343    e. wcel 2136   _Vcvv 2726    i^i cin 3115    C_ wss 3116   ifcif 3520   <.cop 3579   ` cfv 5188  (class class class)co 5842   NNcn 8857   ndxcnx 12391   sSet csts 12392   Basecbs 12394   ↾s cress 12395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1re 7847  ax-addrcl 7850
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-inn 8858  df-ndx 12397  df-slot 12398  df-base 12400  df-sets 12401  df-ress 12402
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator