ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ressval2 Unicode version

Theorem ressval2 12478
Description: Value of nontrivial structure restriction. (Contributed by Stefan O'Rear, 29-Nov-2014.)
Hypotheses
Ref Expression
ressbas.r  |-  R  =  ( Ws  A )
ressbas.b  |-  B  =  ( Base `  W
)
Assertion
Ref Expression
ressval2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )

Proof of Theorem ressval2
Dummy variables  w  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ressbas.r . 2  |-  R  =  ( Ws  A )
2 simp2 993 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  W  e.  X )
32elexd 2743 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  W  e.  _V )
4 simp3 994 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  A  e.  Y )
54elexd 2743 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  A  e.  _V )
6 simp1 992 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  -.  B  C_  A )
76iffalsed 3536 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  if ( B  C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B
) >. ) )
8 basendxnn 12471 . . . . . . 7  |-  ( Base `  ndx )  e.  NN
98a1i 9 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Base ` 
ndx )  e.  NN )
10 inex1g 4125 . . . . . . 7  |-  ( A  e.  Y  ->  ( A  i^i  B )  e. 
_V )
114, 10syl 14 . . . . . 6  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( A  i^i  B )  e.  _V )
12 setsex 12448 . . . . . 6  |-  ( ( W  e.  X  /\  ( Base `  ndx )  e.  NN  /\  ( A  i^i  B )  e. 
_V )  ->  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )  e.  _V )
132, 9, 11, 12syl3anc 1233 . . . . 5  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. )  e.  _V )
147, 13eqeltrd 2247 . . . 4  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  if ( B  C_  A ,  W ,  ( W sSet  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )
15 simpl 108 . . . . . . . . 9  |-  ( ( w  =  W  /\  a  =  A )  ->  w  =  W )
1615fveq2d 5500 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  ( Base `  W ) )
17 ressbas.b . . . . . . . 8  |-  B  =  ( Base `  W
)
1816, 17eqtr4di 2221 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  ( Base `  w
)  =  B )
19 simpr 109 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  ->  a  =  A )
2018, 19sseq12d 3178 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( ( Base `  w
)  C_  a  <->  B  C_  A
) )
2119, 18ineq12d 3329 . . . . . . . 8  |-  ( ( w  =  W  /\  a  =  A )  ->  ( a  i^i  ( Base `  w ) )  =  ( A  i^i  B ) )
2221opeq2d 3772 . . . . . . 7  |-  ( ( w  =  W  /\  a  =  A )  -> 
<. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >.  =  <. (
Base `  ndx ) ,  ( A  i^i  B
) >. )
2315, 22oveq12d 5871 . . . . . 6  |-  ( ( w  =  W  /\  a  =  A )  ->  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. )  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
2420, 15, 23ifbieq12d 3552 . . . . 5  |-  ( ( w  =  W  /\  a  =  A )  ->  if ( ( Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w
) ) >. )
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
25 df-ress 12424 . . . . 5  |-s  =  ( w  e.  _V ,  a  e. 
_V  |->  if ( (
Base `  w )  C_  a ,  w ,  ( w sSet  <. ( Base `  ndx ) ,  ( a  i^i  ( Base `  w ) )
>. ) ) )
2624, 25ovmpoga 5982 . . . 4  |-  ( ( W  e.  _V  /\  A  e.  _V  /\  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) )  e. 
_V )  ->  ( Ws  A )  =  if ( B  C_  A ,  W ,  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
) )
273, 5, 14, 26syl3anc 1233 . . 3  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Ws  A
)  =  if ( B  C_  A ,  W ,  ( W sSet  <.
( Base `  ndx ) ,  ( A  i^i  B
) >. ) ) )
2827, 7eqtrd 2203 . 2  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  ( Ws  A
)  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B ) >. )
)
291, 28eqtrid 2215 1  |-  ( ( -.  B  C_  A  /\  W  e.  X  /\  A  e.  Y
)  ->  R  =  ( W sSet  <. ( Base `  ndx ) ,  ( A  i^i  B )
>. ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    /\ w3a 973    = wceq 1348    e. wcel 2141   _Vcvv 2730    i^i cin 3120    C_ wss 3121   ifcif 3526   <.cop 3586   ` cfv 5198  (class class class)co 5853   NNcn 8878   ndxcnx 12413   sSet csts 12414   Basecbs 12416   ↾s cress 12417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-inn 8879  df-ndx 12419  df-slot 12420  df-base 12422  df-sets 12423  df-ress 12424
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator