ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnn2 Unicode version

Theorem dfnn2 8880
Description: Definition of the set of positive integers. Another name for df-inn 8879. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfnn2
StepHypRef Expression
1 df-inn 8879 1  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 103    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   |^|cint 3831  (class class class)co 5853   1c1 7775    + caddc 7777   NNcn 8878
This theorem depends on definitions:  df-inn 8879
This theorem is referenced by:  peano5nni  8881  1nn  8889  peano2nn  8890  arch  9132  caucvgre  10945
  Copyright terms: Public domain W3C validator