ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfnn2 Unicode version

Theorem dfnn2 9009
Description: Definition of the set of positive integers. Another name for df-inn 9008. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
Assertion
Ref Expression
dfnn2  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Distinct variable group:    x, y

Proof of Theorem dfnn2
StepHypRef Expression
1 df-inn 9008 1  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   |^|cint 3875  (class class class)co 5925   1c1 7897    + caddc 7899   NNcn 9007
This theorem depends on definitions:  df-inn 9008
This theorem is referenced by:  peano5nni  9010  1nn  9018  peano2nn  9019  arch  9263  caucvgre  11163
  Copyright terms: Public domain W3C validator