| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano5nni | Unicode version | ||
| Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano5nni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8042 |
. . . 4
| |
| 2 | elin 3347 |
. . . . 5
| |
| 3 | 2 | biimpri 133 |
. . . 4
|
| 4 | 1, 3 | mpan2 425 |
. . 3
|
| 5 | inss1 3384 |
. . . . 5
| |
| 6 | ssralv 3248 |
. . . . 5
| |
| 7 | 5, 6 | ax-mp 5 |
. . . 4
|
| 8 | inss2 3385 |
. . . . . . . 8
| |
| 9 | 8 | sseli 3180 |
. . . . . . 7
|
| 10 | 1red 8058 |
. . . . . . 7
| |
| 11 | 9, 10 | readdcld 8073 |
. . . . . 6
|
| 12 | elin 3347 |
. . . . . . 7
| |
| 13 | 12 | simplbi2com 1455 |
. . . . . 6
|
| 14 | 11, 13 | syl 14 |
. . . . 5
|
| 15 | 14 | ralimia 2558 |
. . . 4
|
| 16 | 7, 15 | syl 14 |
. . 3
|
| 17 | reex 8030 |
. . . . 5
| |
| 18 | 17 | inex2 4169 |
. . . 4
|
| 19 | eleq2 2260 |
. . . . . . 7
| |
| 20 | eleq2 2260 |
. . . . . . . 8
| |
| 21 | 20 | raleqbi1dv 2705 |
. . . . . . 7
|
| 22 | 19, 21 | anbi12d 473 |
. . . . . 6
|
| 23 | 22 | elabg 2910 |
. . . . 5
|
| 24 | dfnn2 9009 |
. . . . . 6
| |
| 25 | intss1 3890 |
. . . . . 6
| |
| 26 | 24, 25 | eqsstrid 3230 |
. . . . 5
|
| 27 | 23, 26 | biimtrrdi 164 |
. . . 4
|
| 28 | 18, 27 | ax-mp 5 |
. . 3
|
| 29 | 4, 16, 28 | syl2an 289 |
. 2
|
| 30 | 29, 5 | sstrdi 3196 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-int 3876 df-inn 9008 |
| This theorem is referenced by: nnssre 9011 nnind 9023 |
| Copyright terms: Public domain | W3C validator |