| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano5nni | Unicode version | ||
| Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano5nni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8145 |
. . . 4
| |
| 2 | elin 3387 |
. . . . 5
| |
| 3 | 2 | biimpri 133 |
. . . 4
|
| 4 | 1, 3 | mpan2 425 |
. . 3
|
| 5 | inss1 3424 |
. . . . 5
| |
| 6 | ssralv 3288 |
. . . . 5
| |
| 7 | 5, 6 | ax-mp 5 |
. . . 4
|
| 8 | inss2 3425 |
. . . . . . . 8
| |
| 9 | 8 | sseli 3220 |
. . . . . . 7
|
| 10 | 1red 8161 |
. . . . . . 7
| |
| 11 | 9, 10 | readdcld 8176 |
. . . . . 6
|
| 12 | elin 3387 |
. . . . . . 7
| |
| 13 | 12 | simplbi2com 1487 |
. . . . . 6
|
| 14 | 11, 13 | syl 14 |
. . . . 5
|
| 15 | 14 | ralimia 2591 |
. . . 4
|
| 16 | 7, 15 | syl 14 |
. . 3
|
| 17 | reex 8133 |
. . . . 5
| |
| 18 | 17 | inex2 4219 |
. . . 4
|
| 19 | eleq2 2293 |
. . . . . . 7
| |
| 20 | eleq2 2293 |
. . . . . . . 8
| |
| 21 | 20 | raleqbi1dv 2740 |
. . . . . . 7
|
| 22 | 19, 21 | anbi12d 473 |
. . . . . 6
|
| 23 | 22 | elabg 2949 |
. . . . 5
|
| 24 | dfnn2 9112 |
. . . . . 6
| |
| 25 | intss1 3938 |
. . . . . 6
| |
| 26 | 24, 25 | eqsstrid 3270 |
. . . . 5
|
| 27 | 23, 26 | biimtrrdi 164 |
. . . 4
|
| 28 | 18, 27 | ax-mp 5 |
. . 3
|
| 29 | 4, 16, 28 | syl2an 289 |
. 2
|
| 30 | 29, 5 | sstrdi 3236 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-int 3924 df-inn 9111 |
| This theorem is referenced by: nnssre 9114 nnind 9126 |
| Copyright terms: Public domain | W3C validator |