ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nni Unicode version

Theorem peano5nni 9074
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Distinct variable group:    x, A

Proof of Theorem peano5nni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1re 8106 . . . 4  |-  1  e.  RR
2 elin 3364 . . . . 5  |-  ( 1  e.  ( A  i^i  RR )  <->  ( 1  e.  A  /\  1  e.  RR ) )
32biimpri 133 . . . 4  |-  ( ( 1  e.  A  /\  1  e.  RR )  ->  1  e.  ( A  i^i  RR ) )
41, 3mpan2 425 . . 3  |-  ( 1  e.  A  ->  1  e.  ( A  i^i  RR ) )
5 inss1 3401 . . . . 5  |-  ( A  i^i  RR )  C_  A
6 ssralv 3265 . . . . 5  |-  ( ( A  i^i  RR ) 
C_  A  ->  ( A. x  e.  A  ( x  +  1
)  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  +  1 )  e.  A ) )
75, 6ax-mp 5 . . . 4  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  A
)
8 inss2 3402 . . . . . . . 8  |-  ( A  i^i  RR )  C_  RR
98sseli 3197 . . . . . . 7  |-  ( x  e.  ( A  i^i  RR )  ->  x  e.  RR )
10 1red 8122 . . . . . . 7  |-  ( x  e.  ( A  i^i  RR )  ->  1  e.  RR )
119, 10readdcld 8137 . . . . . 6  |-  ( x  e.  ( A  i^i  RR )  ->  ( x  +  1 )  e.  RR )
12 elin 3364 . . . . . . 7  |-  ( ( x  +  1 )  e.  ( A  i^i  RR )  <->  ( ( x  +  1 )  e.  A  /\  ( x  +  1 )  e.  RR ) )
1312simplbi2com 1465 . . . . . 6  |-  ( ( x  +  1 )  e.  RR  ->  (
( x  +  1 )  e.  A  -> 
( x  +  1 )  e.  ( A  i^i  RR ) ) )
1411, 13syl 14 . . . . 5  |-  ( x  e.  ( A  i^i  RR )  ->  ( (
x  +  1 )  e.  A  ->  (
x  +  1 )  e.  ( A  i^i  RR ) ) )
1514ralimia 2569 . . . 4  |-  ( A. x  e.  ( A  i^i  RR ) ( x  +  1 )  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) )
167, 15syl 14 . . 3  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) )
17 reex 8094 . . . . 5  |-  RR  e.  _V
1817inex2 4195 . . . 4  |-  ( A  i^i  RR )  e. 
_V
19 eleq2 2271 . . . . . . 7  |-  ( y  =  ( A  i^i  RR )  ->  ( 1  e.  y  <->  1  e.  ( A  i^i  RR ) ) )
20 eleq2 2271 . . . . . . . 8  |-  ( y  =  ( A  i^i  RR )  ->  ( (
x  +  1 )  e.  y  <->  ( x  +  1 )  e.  ( A  i^i  RR ) ) )
2120raleqbi1dv 2717 . . . . . . 7  |-  ( y  =  ( A  i^i  RR )  ->  ( A. x  e.  y  (
x  +  1 )  e.  y  <->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) ) )
2219, 21anbi12d 473 . . . . . 6  |-  ( y  =  ( A  i^i  RR )  ->  ( (
1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y )  <->  ( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) ) ) )
2322elabg 2926 . . . . 5  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( A  i^i  RR )  e.  { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y ) }  <->  ( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) ) ) )
24 dfnn2 9073 . . . . . 6  |-  NN  =  |^| { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y ) }
25 intss1 3914 . . . . . 6  |-  ( ( A  i^i  RR )  e.  { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  + 
1 )  e.  y ) }  ->  |^| { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y ) }  C_  ( A  i^i  RR ) )
2624, 25eqsstrid 3247 . . . . 5  |-  ( ( A  i^i  RR )  e.  { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  + 
1 )  e.  y ) }  ->  NN  C_  ( A  i^i  RR ) )
2723, 26biimtrrdi 164 . . . 4  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) )  ->  NN  C_  ( A  i^i  RR ) ) )
2818, 27ax-mp 5 . . 3  |-  ( ( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  +  1 )  e.  ( A  i^i  RR ) )  ->  NN  C_  ( A  i^i  RR ) )
294, 16, 28syl2an 289 . 2  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  ( A  i^i  RR ) )
3029, 5sstrdi 3213 1  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   _Vcvv 2776    i^i cin 3173    C_ wss 3174   |^|cint 3899  (class class class)co 5967   RRcr 7959   1c1 7961    + caddc 7963   NNcn 9071
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189  ax-sep 4178  ax-cnex 8051  ax-resscn 8052  ax-1re 8054  ax-addrcl 8057
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-in 3180  df-ss 3187  df-int 3900  df-inn 9072
This theorem is referenced by:  nnssre  9075  nnind  9087
  Copyright terms: Public domain W3C validator