Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano5nni | Unicode version |
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
peano5nni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7919 | . . . 4 | |
2 | elin 3310 | . . . . 5 | |
3 | 2 | biimpri 132 | . . . 4 |
4 | 1, 3 | mpan2 423 | . . 3 |
5 | inss1 3347 | . . . . 5 | |
6 | ssralv 3211 | . . . . 5 | |
7 | 5, 6 | ax-mp 5 | . . . 4 |
8 | inss2 3348 | . . . . . . . 8 | |
9 | 8 | sseli 3143 | . . . . . . 7 |
10 | 1red 7935 | . . . . . . 7 | |
11 | 9, 10 | readdcld 7949 | . . . . . 6 |
12 | elin 3310 | . . . . . . 7 | |
13 | 12 | simplbi2com 1437 | . . . . . 6 |
14 | 11, 13 | syl 14 | . . . . 5 |
15 | 14 | ralimia 2531 | . . . 4 |
16 | 7, 15 | syl 14 | . . 3 |
17 | reex 7908 | . . . . 5 | |
18 | 17 | inex2 4124 | . . . 4 |
19 | eleq2 2234 | . . . . . . 7 | |
20 | eleq2 2234 | . . . . . . . 8 | |
21 | 20 | raleqbi1dv 2673 | . . . . . . 7 |
22 | 19, 21 | anbi12d 470 | . . . . . 6 |
23 | 22 | elabg 2876 | . . . . 5 |
24 | dfnn2 8880 | . . . . . 6 | |
25 | intss1 3846 | . . . . . 6 | |
26 | 24, 25 | eqsstrid 3193 | . . . . 5 |
27 | 23, 26 | syl6bir 163 | . . . 4 |
28 | 18, 27 | ax-mp 5 | . . 3 |
29 | 4, 16, 28 | syl2an 287 | . 2 |
30 | 29, 5 | sstrdi 3159 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 cab 2156 wral 2448 cvv 2730 cin 3120 wss 3121 cint 3831 (class class class)co 5853 cr 7773 c1 7775 caddc 7777 cn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-sep 4107 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-int 3832 df-inn 8879 |
This theorem is referenced by: nnssre 8882 nnind 8894 |
Copyright terms: Public domain | W3C validator |