| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano5nni | Unicode version | ||
| Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano5nni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1re 8071 |
. . . 4
| |
| 2 | elin 3356 |
. . . . 5
| |
| 3 | 2 | biimpri 133 |
. . . 4
|
| 4 | 1, 3 | mpan2 425 |
. . 3
|
| 5 | inss1 3393 |
. . . . 5
| |
| 6 | ssralv 3257 |
. . . . 5
| |
| 7 | 5, 6 | ax-mp 5 |
. . . 4
|
| 8 | inss2 3394 |
. . . . . . . 8
| |
| 9 | 8 | sseli 3189 |
. . . . . . 7
|
| 10 | 1red 8087 |
. . . . . . 7
| |
| 11 | 9, 10 | readdcld 8102 |
. . . . . 6
|
| 12 | elin 3356 |
. . . . . . 7
| |
| 13 | 12 | simplbi2com 1464 |
. . . . . 6
|
| 14 | 11, 13 | syl 14 |
. . . . 5
|
| 15 | 14 | ralimia 2567 |
. . . 4
|
| 16 | 7, 15 | syl 14 |
. . 3
|
| 17 | reex 8059 |
. . . . 5
| |
| 18 | 17 | inex2 4179 |
. . . 4
|
| 19 | eleq2 2269 |
. . . . . . 7
| |
| 20 | eleq2 2269 |
. . . . . . . 8
| |
| 21 | 20 | raleqbi1dv 2714 |
. . . . . . 7
|
| 22 | 19, 21 | anbi12d 473 |
. . . . . 6
|
| 23 | 22 | elabg 2919 |
. . . . 5
|
| 24 | dfnn2 9038 |
. . . . . 6
| |
| 25 | intss1 3900 |
. . . . . 6
| |
| 26 | 24, 25 | eqsstrid 3239 |
. . . . 5
|
| 27 | 23, 26 | biimtrrdi 164 |
. . . 4
|
| 28 | 18, 27 | ax-mp 5 |
. . 3
|
| 29 | 4, 16, 28 | syl2an 289 |
. 2
|
| 30 | 29, 5 | sstrdi 3205 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-int 3886 df-inn 9037 |
| This theorem is referenced by: nnssre 9040 nnind 9052 |
| Copyright terms: Public domain | W3C validator |