Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano5nni | Unicode version |
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
peano5nni |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1re 7898 | . . . 4 | |
2 | elin 3305 | . . . . 5 | |
3 | 2 | biimpri 132 | . . . 4 |
4 | 1, 3 | mpan2 422 | . . 3 |
5 | inss1 3342 | . . . . 5 | |
6 | ssralv 3206 | . . . . 5 | |
7 | 5, 6 | ax-mp 5 | . . . 4 |
8 | inss2 3343 | . . . . . . . 8 | |
9 | 8 | sseli 3138 | . . . . . . 7 |
10 | 1red 7914 | . . . . . . 7 | |
11 | 9, 10 | readdcld 7928 | . . . . . 6 |
12 | elin 3305 | . . . . . . 7 | |
13 | 12 | simplbi2com 1432 | . . . . . 6 |
14 | 11, 13 | syl 14 | . . . . 5 |
15 | 14 | ralimia 2527 | . . . 4 |
16 | 7, 15 | syl 14 | . . 3 |
17 | reex 7887 | . . . . 5 | |
18 | 17 | inex2 4117 | . . . 4 |
19 | eleq2 2230 | . . . . . . 7 | |
20 | eleq2 2230 | . . . . . . . 8 | |
21 | 20 | raleqbi1dv 2669 | . . . . . . 7 |
22 | 19, 21 | anbi12d 465 | . . . . . 6 |
23 | 22 | elabg 2872 | . . . . 5 |
24 | dfnn2 8859 | . . . . . 6 | |
25 | intss1 3839 | . . . . . 6 | |
26 | 24, 25 | eqsstrid 3188 | . . . . 5 |
27 | 23, 26 | syl6bir 163 | . . . 4 |
28 | 18, 27 | ax-mp 5 | . . 3 |
29 | 4, 16, 28 | syl2an 287 | . 2 |
30 | 29, 5 | sstrdi 3154 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 cab 2151 wral 2444 cvv 2726 cin 3115 wss 3116 cint 3824 (class class class)co 5842 cr 7752 c1 7754 caddc 7756 cn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-int 3825 df-inn 8858 |
This theorem is referenced by: nnssre 8861 nnind 8873 |
Copyright terms: Public domain | W3C validator |