ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano5nni Unicode version

Theorem peano5nni 8924
Description: Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano5nni  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Distinct variable group:    x, A

Proof of Theorem peano5nni
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 1re 7958 . . . 4  |-  1  e.  RR
2 elin 3320 . . . . 5  |-  ( 1  e.  ( A  i^i  RR )  <->  ( 1  e.  A  /\  1  e.  RR ) )
32biimpri 133 . . . 4  |-  ( ( 1  e.  A  /\  1  e.  RR )  ->  1  e.  ( A  i^i  RR ) )
41, 3mpan2 425 . . 3  |-  ( 1  e.  A  ->  1  e.  ( A  i^i  RR ) )
5 inss1 3357 . . . . 5  |-  ( A  i^i  RR )  C_  A
6 ssralv 3221 . . . . 5  |-  ( ( A  i^i  RR ) 
C_  A  ->  ( A. x  e.  A  ( x  +  1
)  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  +  1 )  e.  A ) )
75, 6ax-mp 5 . . . 4  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  A
)
8 inss2 3358 . . . . . . . 8  |-  ( A  i^i  RR )  C_  RR
98sseli 3153 . . . . . . 7  |-  ( x  e.  ( A  i^i  RR )  ->  x  e.  RR )
10 1red 7974 . . . . . . 7  |-  ( x  e.  ( A  i^i  RR )  ->  1  e.  RR )
119, 10readdcld 7989 . . . . . 6  |-  ( x  e.  ( A  i^i  RR )  ->  ( x  +  1 )  e.  RR )
12 elin 3320 . . . . . . 7  |-  ( ( x  +  1 )  e.  ( A  i^i  RR )  <->  ( ( x  +  1 )  e.  A  /\  ( x  +  1 )  e.  RR ) )
1312simplbi2com 1444 . . . . . 6  |-  ( ( x  +  1 )  e.  RR  ->  (
( x  +  1 )  e.  A  -> 
( x  +  1 )  e.  ( A  i^i  RR ) ) )
1411, 13syl 14 . . . . 5  |-  ( x  e.  ( A  i^i  RR )  ->  ( (
x  +  1 )  e.  A  ->  (
x  +  1 )  e.  ( A  i^i  RR ) ) )
1514ralimia 2538 . . . 4  |-  ( A. x  e.  ( A  i^i  RR ) ( x  +  1 )  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) )
167, 15syl 14 . . 3  |-  ( A. x  e.  A  (
x  +  1 )  e.  A  ->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) )
17 reex 7947 . . . . 5  |-  RR  e.  _V
1817inex2 4140 . . . 4  |-  ( A  i^i  RR )  e. 
_V
19 eleq2 2241 . . . . . . 7  |-  ( y  =  ( A  i^i  RR )  ->  ( 1  e.  y  <->  1  e.  ( A  i^i  RR ) ) )
20 eleq2 2241 . . . . . . . 8  |-  ( y  =  ( A  i^i  RR )  ->  ( (
x  +  1 )  e.  y  <->  ( x  +  1 )  e.  ( A  i^i  RR ) ) )
2120raleqbi1dv 2681 . . . . . . 7  |-  ( y  =  ( A  i^i  RR )  ->  ( A. x  e.  y  (
x  +  1 )  e.  y  <->  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) ) )
2219, 21anbi12d 473 . . . . . 6  |-  ( y  =  ( A  i^i  RR )  ->  ( (
1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y )  <->  ( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) ) ) )
2322elabg 2885 . . . . 5  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( A  i^i  RR )  e.  { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y ) }  <->  ( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) ) ) )
24 dfnn2 8923 . . . . . 6  |-  NN  =  |^| { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y ) }
25 intss1 3861 . . . . . 6  |-  ( ( A  i^i  RR )  e.  { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  + 
1 )  e.  y ) }  ->  |^| { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  +  1 )  e.  y ) }  C_  ( A  i^i  RR ) )
2624, 25eqsstrid 3203 . . . . 5  |-  ( ( A  i^i  RR )  e.  { y  |  ( 1  e.  y  /\  A. x  e.  y  ( x  + 
1 )  e.  y ) }  ->  NN  C_  ( A  i^i  RR ) )
2723, 26syl6bir 164 . . . 4  |-  ( ( A  i^i  RR )  e.  _V  ->  (
( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  + 
1 )  e.  ( A  i^i  RR ) )  ->  NN  C_  ( A  i^i  RR ) ) )
2818, 27ax-mp 5 . . 3  |-  ( ( 1  e.  ( A  i^i  RR )  /\  A. x  e.  ( A  i^i  RR ) ( x  +  1 )  e.  ( A  i^i  RR ) )  ->  NN  C_  ( A  i^i  RR ) )
294, 16, 28syl2an 289 . 2  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  ( A  i^i  RR ) )
3029, 5sstrdi 3169 1  |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   {cab 2163   A.wral 2455   _Vcvv 2739    i^i cin 3130    C_ wss 3131   |^|cint 3846  (class class class)co 5877   RRcr 7812   1c1 7814    + caddc 7816   NNcn 8921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159  ax-sep 4123  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-in 3137  df-ss 3144  df-int 3847  df-inn 8922
This theorem is referenced by:  nnssre  8925  nnind  8937
  Copyright terms: Public domain W3C validator