HomeHome Intuitionistic Logic Explorer
Theorem List (p. 90 of 159)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8901-9000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlemul2 8901 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <_  B  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )
 
Theoremlemul1a 8902 Multiplication of both sides of 'less than or equal to' by a nonnegative number. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 21-Feb-2005.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  ->  ( A  x.  C )  <_  ( B  x.  C ) )
 
Theoremlemul2a 8903 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  ->  ( C  x.  A )  <_  ( C  x.  B ) )
 
Theoremltmul12a 8904 Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
 |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <  B ) )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  ( 0  <_  C  /\  C  <  D ) ) )  ->  ( A  x.  C )  < 
 ( B  x.  D ) )
 
Theoremlemul12b 8905 Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
 |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D )
 ) )  ->  (
 ( A  <_  B  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( B  x.  D ) ) )
 
Theoremlemul12a 8906 Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
 |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( ( C  e.  RR  /\  0  <_  C )  /\  D  e.  RR ) )  ->  ( ( A  <_  B  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( B  x.  D ) ) )
 
Theoremmulgt1 8907 The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
 1  <  A  /\  1  <  B ) ) 
 ->  1  <  ( A  x.  B ) )
 
Theoremltmulgt11 8908 Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  A ) 
 ->  ( 1  <  B  <->  A  <  ( A  x.  B ) ) )
 
Theoremltmulgt12 8909 Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  A ) 
 ->  ( 1  <  B  <->  A  <  ( B  x.  A ) ) )
 
Theoremlemulge11 8910 Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
 0  <_  A  /\  1  <_  B ) ) 
 ->  A  <_  ( A  x.  B ) )
 
Theoremlemulge12 8911 Multiplication by a number greater than or equal to 1. (Contributed by Paul Chapman, 21-Mar-2011.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
 0  <_  A  /\  1  <_  B ) ) 
 ->  A  <_  ( B  x.  A ) )
 
Theoremltdiv1 8912 Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <  B  <->  ( A  /  C )  <  ( B 
 /  C ) ) )
 
Theoremlediv1 8913 Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <_  B  <->  ( A  /  C )  <_  ( B 
 /  C ) ) )
 
Theoremgt0div 8914 Division of a positive number by a positive number. (Contributed by NM, 28-Sep-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  B ) 
 ->  ( 0  <  A  <->  0  <  ( A  /  B ) ) )
 
Theoremge0div 8915 Division of a nonnegative number by a positive number. (Contributed by NM, 28-Sep-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  0  <  B ) 
 ->  ( 0  <_  A  <->  0 
 <_  ( A  /  B ) ) )
 
Theoremdivgt0 8916 The ratio of two positive numbers is positive. (Contributed by NM, 12-Oct-1999.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
 0  <  ( A  /  B ) )
 
Theoremdivge0 8917 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
 0  <_  ( A  /  B ) )
 
Theoremltmuldiv 8918 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  x.  C )  <  B 
 <->  A  <  ( B 
 /  C ) ) )
 
Theoremltmuldiv2 8919 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( C  x.  A )  <  B 
 <->  A  <  ( B 
 /  C ) ) )
 
Theoremltdivmul 8920 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  C )  <  B 
 <->  A  <  ( C  x.  B ) ) )
 
Theoremledivmul 8921 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  C )  <_  B 
 <->  A  <_  ( C  x.  B ) ) )
 
Theoremltdivmul2 8922 'Less than' relationship between division and multiplication. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  C )  <  B 
 <->  A  <  ( B  x.  C ) ) )
 
Theoremlt2mul2div 8923 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  (
 ( A  x.  B )  <  ( C  x.  D )  <->  ( A  /  D )  <  ( C 
 /  B ) ) )
 
Theoremledivmul2 8924 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  C )  <_  B 
 <->  A  <_  ( B  x.  C ) ) )
 
Theoremlemuldiv 8925 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  x.  C )  <_  B 
 <->  A  <_  ( B  /  C ) ) )
 
Theoremlemuldiv2 8926 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( C  x.  A )  <_  B 
 <->  A  <_  ( B  /  C ) ) )
 
Theoremltrec 8927 The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <  B  <->  ( 1  /  B )  <  ( 1 
 /  A ) ) )
 
Theoremlerec 8928 The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <_  B  <->  ( 1  /  B )  <_  ( 1 
 /  A ) ) )
 
Theoremlt2msq1 8929 Lemma for lt2msq 8930. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( A  x.  A )  <  ( B  x.  B ) )
 
Theoremlt2msq 8930 Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <  B  <->  ( A  x.  A )  <  ( B  x.  B ) ) )
 
Theoremltdiv2 8931 Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <  B  <->  ( C  /  B )  <  ( C 
 /  A ) ) )
 
Theoremltrec1 8932 Reciprocal swap in a 'less than' relation. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( 1  /  A )  <  B  <->  ( 1  /  B )  <  A ) )
 
Theoremlerec2 8933 Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <_  ( 1 
 /  B )  <->  B  <_  ( 1 
 /  A ) ) )
 
Theoremledivdiv 8934 Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006.)
 |-  ( ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( ( C  e.  RR  /\  0  <  C )  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  (
 ( A  /  B )  <_  ( C  /  D )  <->  ( D  /  C )  <_  ( B 
 /  A ) ) )
 
Theoremlediv2 8935 Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <_  B  <->  ( C  /  B )  <_  ( C 
 /  A ) ) )
 
Theoremltdiv23 8936 Swap denominator with other side of 'less than'. (Contributed by NM, 3-Oct-1999.)
 |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )
 
Theoremlediv23 8937 Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005.)
 |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  B ) 
 <_  C  <->  ( A  /  C )  <_  B ) )
 
Theoremlediv12a 8938 Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
 |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B )
 )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
 0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )
 
Theoremlediv2a 8939 Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
 |-  ( ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) 
 /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  ->  ( C  /  B )  <_  ( C  /  A ) )
 
Theoremreclt1 8940 The reciprocal of a positive number less than 1 is greater than 1. (Contributed by NM, 23-Feb-2005.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  ( A  <  1  <-> 
 1  <  ( 1  /  A ) ) )
 
Theoremrecgt1 8941 The reciprocal of a positive number greater than 1 is less than 1. (Contributed by NM, 28-Dec-2005.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  ( 1  <  A 
 <->  ( 1  /  A )  <  1 ) )
 
Theoremrecgt1i 8942 The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005.)
 |-  ( ( A  e.  RR  /\  1  <  A )  ->  ( 0  < 
 ( 1  /  A )  /\  ( 1  /  A )  <  1 ) )
 
Theoremrecp1lt1 8943 Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( A  /  ( 1  +  A ) )  <  1 )
 
Theoremrecreclt 8944 Given a positive number  A, construct a new positive number less than both  A and 1. (Contributed by NM, 28-Dec-2005.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  ( ( 1 
 /  ( 1  +  ( 1  /  A ) ) )  < 
 1  /\  ( 1  /  ( 1  +  (
 1  /  A )
 ) )  <  A ) )
 
Theoremle2msq 8945 The square function on nonnegative reals is monotonic. (Contributed by NM, 3-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  B ) ) )
 
Theoremmsq11 8946 The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( A  x.  A )  =  ( B  x.  B )  <->  A  =  B ) )
 
Theoremledivp1 8947 Less-than-or-equal-to and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( A  /  ( B  +  1
 ) )  x.  B )  <_  A )
 
Theoremsqueeze0 8948* If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
 |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  ( 0  <  x  ->  A  <  x ) )  ->  A  =  0 )
 
Theoremltp1i 8949 A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
 |-  A  e.  RR   =>    |-  A  <  ( A  +  1 )
 
Theoremrecgt0i 8950 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
 |-  A  e.  RR   =>    |-  ( 0  <  A  ->  0  <  (
 1  /  A )
 )
 
Theoremrecgt0ii 8951 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
 |-  A  e.  RR   &    |-  0  <  A   =>    |-  0  <  ( 1 
 /  A )
 
Theoremprodgt0i 8952 Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <  ( A  x.  B ) ) 
 ->  0  <  B )
 
Theoremprodge0i 8953 Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <  A  /\  0  <_  ( A  x.  B ) ) 
 ->  0  <_  B )
 
Theoremdivgt0i 8954 The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <  A  /\  0  <  B )  ->  0  <  ( A  /  B ) )
 
Theoremdivge0i 8955 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 12-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <  B )  ->  0  <_  ( A  /  B ) )
 
Theoremltreci 8956 The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <  A  /\  0  <  B )  ->  ( A  <  B  <-> 
 ( 1  /  B )  <  ( 1  /  A ) ) )
 
Theoremlereci 8957 The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 16-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <  A  /\  0  <  B )  ->  ( A  <_  B  <-> 
 ( 1  /  B )  <_  ( 1  /  A ) ) )
 
Theoremlt2msqi 8958 The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 3-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( A  <  B  <-> 
 ( A  x.  A )  <  ( B  x.  B ) ) )
 
Theoremle2msqi 8959 The square function on nonnegative reals is monotonic. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( A  <_  B  <-> 
 ( A  x.  A )  <_  ( B  x.  B ) ) )
 
Theoremmsq11i 8960 The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( ( A  x.  A )  =  ( B  x.  B ) 
 <->  A  =  B ) )
 
Theoremdivgt0i2i 8961 The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  0  <  B   =>    |-  (
 0  <  A  ->  0  <  ( A  /  B ) )
 
Theoremltrecii 8962 The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  0  <  A   &    |-  0  <  B   =>    |-  ( A  <  B  <->  ( 1  /  B )  <  ( 1  /  A ) )
 
Theoremdivgt0ii 8963 The ratio of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  0  <  A   &    |-  0  <  B   =>    |-  0  <  ( A 
 /  B )
 
Theoremltmul1i 8964 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
 
Theoremltdiv1i 8965 Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <  B  <->  ( A  /  C )  <  ( B 
 /  C ) ) )
 
Theoremltmuldivi 8966 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( ( A  x.  C )  <  B  <->  A  <  ( B 
 /  C ) ) )
 
Theoremltmul2i 8967 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
 
Theoremlemul1i 8968 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <_  B  <->  ( A  x.  C )  <_  ( B  x.  C ) ) )
 
Theoremlemul2i 8969 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 1-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <_  B  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )
 
Theoremltdiv23i 8970 Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( 0  <  B  /\  0  <  C ) 
 ->  ( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )
 
Theoremltdiv23ii 8971 Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  0  <  B   &    |-  0  <  C   =>    |-  (
 ( A  /  B )  <  C  <->  ( A  /  C )  <  B )
 
Theoremltmul1ii 8972 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) (Proof shortened by Paul Chapman, 25-Jan-2008.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  0  <  C   =>    |-  ( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) )
 
Theoremltdiv1ii 8973 Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  0  <  C   =>    |-  ( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) )
 
Theoremltp1d 8974 A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  <  ( A  +  1 ) )
 
Theoremlep1d 8975 A number is less than or equal to itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  <_  ( A  +  1 ) )
 
Theoremltm1d 8976 A number minus 1 is less than itself. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A  -  1 )  <  A )
 
Theoremlem1d 8977 A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A  -  1 )  <_  A )
 
Theoremrecgt0d 8978 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <  A )   =>    |-  ( ph  ->  0  <  ( 1  /  A ) )
 
Theoremdivgt0d 8979 The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  0  <  ( A  /  B ) )
 
Theoremmulgt1d 8980 The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  1  <  A )   &    |-  ( ph  ->  1  <  B )   =>    |-  ( ph  ->  1  <  ( A  x.  B ) )
 
Theoremlemulge11d 8981 Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  1  <_  B )   =>    |-  ( ph  ->  A  <_  ( A  x.  B ) )
 
Theoremlemulge12d 8982 Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  1  <_  B )   =>    |-  ( ph  ->  A  <_  ( B  x.  A ) )
 
Theoremlemul1ad 8983 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  0  <_  C )   &    |-  ( ph  ->  A 
 <_  B )   =>    |-  ( ph  ->  ( A  x.  C )  <_  ( B  x.  C ) )
 
Theoremlemul2ad 8984 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  0  <_  C )   &    |-  ( ph  ->  A 
 <_  B )   =>    |-  ( ph  ->  ( C  x.  A )  <_  ( C  x.  B ) )
 
Theoremltmul12ad 8985 Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  0  <_  C )   &    |-  ( ph  ->  C  <  D )   =>    |-  ( ph  ->  ( A  x.  C )  < 
 ( B  x.  D ) )
 
Theoremlemul12ad 8986 Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  0 
 <_  C )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  C 
 <_  D )   =>    |-  ( ph  ->  ( A  x.  C )  <_  ( B  x.  D ) )
 
Theoremlemul12bd 8987 Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  0 
 <_  D )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  C 
 <_  D )   =>    |-  ( ph  ->  ( A  x.  C )  <_  ( B  x.  D ) )
 
Theoremmulle0r 8988 Multiplying a nonnegative number by a nonpositive number yields a nonpositive number. (Contributed by Jim Kingdon, 28-Oct-2021.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  0  /\  0  <_  B ) )  ->  ( A  x.  B )  <_  0 )
 
4.3.10  Suprema
 
Theoremlbreu 8989* If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y
 )  ->  E! x  e.  S  A. y  e.  S  x  <_  y
 )
 
Theoremlbcl 8990* If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y
 )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
 )  e.  S )
 
Theoremlble 8991* If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S ) 
 ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A )
 
Theoremlbinf 8992* If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y
 )  -> inf ( S ,  RR ,  <  )  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y ) )
 
Theoremlbinfcl 8993* If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y
 )  -> inf ( S ,  RR ,  <  )  e.  S )
 
Theoremlbinfle 8994* If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S ) 
 -> inf ( S ,  RR ,  <  )  <_  A )
 
Theoremsuprubex 8995* A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  ->  B  <_  sup ( A ,  RR ,  <  ) )
 
Theoremsuprlubex 8996* The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( B  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  B  <  z ) )
 
Theoremsuprnubex 8997* An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( -.  B  <  sup ( A ,  RR ,  <  )  <->  A. z  e.  A  -.  B  <  z ) )
 
Theoremsuprleubex 8998* The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. z  e.  A  z 
 <_  B ) )
 
Theoremnegiso 8999 Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  F  =  ( x  e.  RR  |->  -u x )   =>    |-  ( F  Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )
 
Theoremdfinfre 9000* The infimum of a set of reals  A. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
 |-  ( A  C_  RR  -> inf ( A ,  RR ,  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y
 ) ) } )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15815
  Copyright terms: Public domain < Previous  Next >