HomeHome Intuitionistic Logic Explorer
Theorem List (p. 90 of 158)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8901-9000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremltmuldiv 8901 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  x.  C )  <  B 
 <->  A  <  ( B 
 /  C ) ) )
 
Theoremltmuldiv2 8902 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( C  x.  A )  <  B 
 <->  A  <  ( B 
 /  C ) ) )
 
Theoremltdivmul 8903 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  C )  <  B 
 <->  A  <  ( C  x.  B ) ) )
 
Theoremledivmul 8904 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  C )  <_  B 
 <->  A  <_  ( C  x.  B ) ) )
 
Theoremltdivmul2 8905 'Less than' relationship between division and multiplication. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  C )  <  B 
 <->  A  <  ( B  x.  C ) ) )
 
Theoremlt2mul2div 8906 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
 |-  ( ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  (
 ( A  x.  B )  <  ( C  x.  D )  <->  ( A  /  D )  <  ( C 
 /  B ) ) )
 
Theoremledivmul2 8907 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  C )  <_  B 
 <->  A  <_  ( B  x.  C ) ) )
 
Theoremlemuldiv 8908 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  x.  C )  <_  B 
 <->  A  <_  ( B  /  C ) ) )
 
Theoremlemuldiv2 8909 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( C  x.  A )  <_  B 
 <->  A  <_  ( B  /  C ) ) )
 
Theoremltrec 8910 The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <  B  <->  ( 1  /  B )  <  ( 1 
 /  A ) ) )
 
Theoremlerec 8911 The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <_  B  <->  ( 1  /  B )  <_  ( 1 
 /  A ) ) )
 
Theoremlt2msq1 8912 Lemma for lt2msq 8913. (Contributed by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR  /\  A  <  B )  ->  ( A  x.  A )  <  ( B  x.  B ) )
 
Theoremlt2msq 8913 Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <  B  <->  ( A  x.  A )  <  ( B  x.  B ) ) )
 
Theoremltdiv2 8914 Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <  B  <->  ( C  /  B )  <  ( C 
 /  A ) ) )
 
Theoremltrec1 8915 Reciprocal swap in a 'less than' relation. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( 1  /  A )  <  B  <->  ( 1  /  B )  <  A ) )
 
Theoremlerec2 8916 Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <_  ( 1 
 /  B )  <->  B  <_  ( 1 
 /  A ) ) )
 
Theoremledivdiv 8917 Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006.)
 |-  ( ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) )  /\  ( ( C  e.  RR  /\  0  <  C )  /\  ( D  e.  RR  /\  0  <  D ) ) )  ->  (
 ( A  /  B )  <_  ( C  /  D )  <->  ( D  /  C )  <_  ( B 
 /  A ) ) )
 
Theoremlediv2 8918 Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006.)
 |-  ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <_  B  <->  ( C  /  B )  <_  ( C 
 /  A ) ) )
 
Theoremltdiv23 8919 Swap denominator with other side of 'less than'. (Contributed by NM, 3-Oct-1999.)
 |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )
 
Theoremlediv23 8920 Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005.)
 |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B )  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( A  /  B ) 
 <_  C  <->  ( A  /  C )  <_  B ) )
 
Theoremlediv12a 8921 Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
 |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B )
 )  /\  ( ( C  e.  RR  /\  D  e.  RR )  /\  (
 0  <  C  /\  C  <_  D ) ) )  ->  ( A  /  D )  <_  ( B  /  C ) )
 
Theoremlediv2a 8922 Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
 |-  ( ( ( ( A  e.  RR  /\  0  <  A )  /\  ( B  e.  RR  /\  0  <  B ) 
 /\  ( C  e.  RR  /\  0  <_  C ) )  /\  A  <_  B )  ->  ( C  /  B )  <_  ( C  /  A ) )
 
Theoremreclt1 8923 The reciprocal of a positive number less than 1 is greater than 1. (Contributed by NM, 23-Feb-2005.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  ( A  <  1  <-> 
 1  <  ( 1  /  A ) ) )
 
Theoremrecgt1 8924 The reciprocal of a positive number greater than 1 is less than 1. (Contributed by NM, 28-Dec-2005.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  ( 1  <  A 
 <->  ( 1  /  A )  <  1 ) )
 
Theoremrecgt1i 8925 The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005.)
 |-  ( ( A  e.  RR  /\  1  <  A )  ->  ( 0  < 
 ( 1  /  A )  /\  ( 1  /  A )  <  1 ) )
 
Theoremrecp1lt1 8926 Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( A  /  ( 1  +  A ) )  <  1 )
 
Theoremrecreclt 8927 Given a positive number  A, construct a new positive number less than both  A and 1. (Contributed by NM, 28-Dec-2005.)
 |-  ( ( A  e.  RR  /\  0  <  A )  ->  ( ( 1 
 /  ( 1  +  ( 1  /  A ) ) )  < 
 1  /\  ( 1  /  ( 1  +  (
 1  /  A )
 ) )  <  A ) )
 
Theoremle2msq 8928 The square function on nonnegative reals is monotonic. (Contributed by NM, 3-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( A  <_  B  <->  ( A  x.  A )  <_  ( B  x.  B ) ) )
 
Theoremmsq11 8929 The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( A  x.  A )  =  ( B  x.  B )  <->  A  =  B ) )
 
Theoremledivp1 8930 Less-than-or-equal-to and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <_  B ) )  ->  ( ( A  /  ( B  +  1
 ) )  x.  B )  <_  A )
 
Theoremsqueeze0 8931* If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
 |-  ( ( A  e.  RR  /\  0  <_  A  /\  A. x  e.  RR  ( 0  <  x  ->  A  <  x ) )  ->  A  =  0 )
 
Theoremltp1i 8932 A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
 |-  A  e.  RR   =>    |-  A  <  ( A  +  1 )
 
Theoremrecgt0i 8933 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
 |-  A  e.  RR   =>    |-  ( 0  <  A  ->  0  <  (
 1  /  A )
 )
 
Theoremrecgt0ii 8934 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 15-May-1999.)
 |-  A  e.  RR   &    |-  0  <  A   =>    |-  0  <  ( 1 
 /  A )
 
Theoremprodgt0i 8935 Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 15-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <  ( A  x.  B ) ) 
 ->  0  <  B )
 
Theoremprodge0i 8936 Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <  A  /\  0  <_  ( A  x.  B ) ) 
 ->  0  <_  B )
 
Theoremdivgt0i 8937 The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <  A  /\  0  <  B )  ->  0  <  ( A  /  B ) )
 
Theoremdivge0i 8938 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 12-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <  B )  ->  0  <_  ( A  /  B ) )
 
Theoremltreci 8939 The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <  A  /\  0  <  B )  ->  ( A  <  B  <-> 
 ( 1  /  B )  <  ( 1  /  A ) ) )
 
Theoremlereci 8940 The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 16-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <  A  /\  0  <  B )  ->  ( A  <_  B  <-> 
 ( 1  /  B )  <_  ( 1  /  A ) ) )
 
Theoremlt2msqi 8941 The square function on nonnegative reals is strictly monotonic. (Contributed by NM, 3-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( A  <  B  <-> 
 ( A  x.  A )  <  ( B  x.  B ) ) )
 
Theoremle2msqi 8942 The square function on nonnegative reals is monotonic. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( A  <_  B  <-> 
 ( A  x.  A )  <_  ( B  x.  B ) ) )
 
Theoremmsq11i 8943 The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   =>    |-  ( ( 0  <_  A  /\  0  <_  B )  ->  ( ( A  x.  A )  =  ( B  x.  B ) 
 <->  A  =  B ) )
 
Theoremdivgt0i2i 8944 The ratio of two positive numbers is positive. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  0  <  B   =>    |-  (
 0  <  A  ->  0  <  ( A  /  B ) )
 
Theoremltrecii 8945 The reciprocal of both sides of 'less than'. (Contributed by NM, 15-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  0  <  A   &    |-  0  <  B   =>    |-  ( A  <  B  <->  ( 1  /  B )  <  ( 1  /  A ) )
 
Theoremdivgt0ii 8946 The ratio of two positive numbers is positive. (Contributed by NM, 18-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  0  <  A   &    |-  0  <  B   =>    |-  0  <  ( A 
 /  B )
 
Theoremltmul1i 8947 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) ) )
 
Theoremltdiv1i 8948 Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <  B  <->  ( A  /  C )  <  ( B 
 /  C ) ) )
 
Theoremltmuldivi 8949 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( ( A  x.  C )  <  B  <->  A  <  ( B 
 /  C ) ) )
 
Theoremltmul2i 8950 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <  B  <->  ( C  x.  A )  <  ( C  x.  B ) ) )
 
Theoremlemul1i 8951 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 2-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <_  B  <->  ( A  x.  C )  <_  ( B  x.  C ) ) )
 
Theoremlemul2i 8952 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 1-Aug-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 0  <  C  ->  ( A  <_  B  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )
 
Theoremltdiv23i 8953 Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   =>    |-  (
 ( 0  <  B  /\  0  <  C ) 
 ->  ( ( A  /  B )  <  C  <->  ( A  /  C )  <  B ) )
 
Theoremltdiv23ii 8954 Swap denominator with other side of 'less than'. (Contributed by NM, 26-Sep-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  0  <  B   &    |-  0  <  C   =>    |-  (
 ( A  /  B )  <  C  <->  ( A  /  C )  <  B )
 
Theoremltmul1ii 8955 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 16-May-1999.) (Proof shortened by Paul Chapman, 25-Jan-2008.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  0  <  C   =>    |-  ( A  <  B  <->  ( A  x.  C )  <  ( B  x.  C ) )
 
Theoremltdiv1ii 8956 Division of both sides of 'less than' by a positive number. (Contributed by NM, 16-May-1999.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  C  e.  RR   &    |-  0  <  C   =>    |-  ( A  <  B  <->  ( A  /  C )  <  ( B  /  C ) )
 
Theoremltp1d 8957 A number is less than itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  <  ( A  +  1 ) )
 
Theoremlep1d 8958 A number is less than or equal to itself plus 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  A  <_  ( A  +  1 ) )
 
Theoremltm1d 8959 A number minus 1 is less than itself. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A  -  1 )  <  A )
 
Theoremlem1d 8960 A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   =>    |-  ( ph  ->  ( A  -  1 )  <_  A )
 
Theoremrecgt0d 8961 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <  A )   =>    |-  ( ph  ->  0  <  ( 1  /  A ) )
 
Theoremdivgt0d 8962 The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <  A )   &    |-  ( ph  ->  0  <  B )   =>    |-  ( ph  ->  0  <  ( A  /  B ) )
 
Theoremmulgt1d 8963 The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  1  <  A )   &    |-  ( ph  ->  1  <  B )   =>    |-  ( ph  ->  1  <  ( A  x.  B ) )
 
Theoremlemulge11d 8964 Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  1  <_  B )   =>    |-  ( ph  ->  A  <_  ( A  x.  B ) )
 
Theoremlemulge12d 8965 Multiplication by a number greater than or equal to 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  0  <_  A )   &    |-  ( ph  ->  1  <_  B )   =>    |-  ( ph  ->  A  <_  ( B  x.  A ) )
 
Theoremlemul1ad 8966 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  0  <_  C )   &    |-  ( ph  ->  A 
 <_  B )   =>    |-  ( ph  ->  ( A  x.  C )  <_  ( B  x.  C ) )
 
Theoremlemul2ad 8967 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  0  <_  C )   &    |-  ( ph  ->  A 
 <_  B )   =>    |-  ( ph  ->  ( C  x.  A )  <_  ( C  x.  B ) )
 
Theoremltmul12ad 8968 Comparison of product of two positive numbers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  A  <  B )   &    |-  ( ph  ->  0  <_  C )   &    |-  ( ph  ->  C  <  D )   =>    |-  ( ph  ->  ( A  x.  C )  < 
 ( B  x.  D ) )
 
Theoremlemul12ad 8969 Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  0 
 <_  C )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  C 
 <_  D )   =>    |-  ( ph  ->  ( A  x.  C )  <_  ( B  x.  D ) )
 
Theoremlemul12bd 8970 Comparison of product of two nonnegative numbers. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  D  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   &    |-  ( ph  ->  0 
 <_  D )   &    |-  ( ph  ->  A 
 <_  B )   &    |-  ( ph  ->  C 
 <_  D )   =>    |-  ( ph  ->  ( A  x.  C )  <_  ( B  x.  D ) )
 
Theoremmulle0r 8971 Multiplying a nonnegative number by a nonpositive number yields a nonpositive number. (Contributed by Jim Kingdon, 28-Oct-2021.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( A  <_  0  /\  0  <_  B ) )  ->  ( A  x.  B )  <_  0 )
 
4.3.10  Suprema
 
Theoremlbreu 8972* If a set of reals contains a lower bound, it contains a unique lower bound. (Contributed by NM, 9-Oct-2005.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y
 )  ->  E! x  e.  S  A. y  e.  S  x  <_  y
 )
 
Theoremlbcl 8973* If a set of reals contains a lower bound, it contains a unique lower bound that belongs to the set. (Contributed by NM, 9-Oct-2005.) (Revised by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y
 )  ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y
 )  e.  S )
 
Theoremlble 8974* If a set of reals contains a lower bound, the lower bound is less than or equal to all members of the set. (Contributed by NM, 9-Oct-2005.) (Proof shortened by Mario Carneiro, 24-Dec-2016.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S ) 
 ->  ( iota_ x  e.  S  A. y  e.  S  x  <_  y )  <_  A )
 
Theoremlbinf 8975* If a set of reals contains a lower bound, the lower bound is its infimum. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y
 )  -> inf ( S ,  RR ,  <  )  =  ( iota_ x  e.  S  A. y  e.  S  x  <_  y ) )
 
Theoremlbinfcl 8976* If a set of reals contains a lower bound, it contains its infimum. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y
 )  -> inf ( S ,  RR ,  <  )  e.  S )
 
Theoremlbinfle 8977* If a set of reals contains a lower bound, its infimum is less than or equal to all members of the set. (Contributed by NM, 11-Oct-2005.) (Revised by AV, 4-Sep-2020.)
 |-  ( ( S  C_  RR  /\  E. x  e.  S  A. y  e.  S  x  <_  y  /\  A  e.  S ) 
 -> inf ( S ,  RR ,  <  )  <_  A )
 
Theoremsuprubex 8978* A member of a nonempty bounded set of reals is less than or equal to the set's upper bound. (Contributed by Jim Kingdon, 18-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  A )   =>    |-  ( ph  ->  B  <_  sup ( A ,  RR ,  <  ) )
 
Theoremsuprlubex 8979* The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( B  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  B  <  z ) )
 
Theoremsuprnubex 8980* An upper bound is not less than the supremum of a nonempty bounded set of reals. (Contributed by Jim Kingdon, 19-Jan-2022.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( -.  B  <  sup ( A ,  RR ,  <  )  <->  A. z  e.  A  -.  B  <  z ) )
 
Theoremsuprleubex 8981* The supremum of a nonempty bounded set of reals is less than or equal to an upper bound. (Contributed by NM, 18-Mar-2005.) (Revised by Mario Carneiro, 6-Sep-2014.)
 |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  < 
 y  /\  A. y  e. 
 RR  ( y  < 
 x  ->  E. z  e.  A  y  <  z
 ) ) )   &    |-  ( ph  ->  A  C_  RR )   &    |-  ( ph  ->  B  e.  RR )   =>    |-  ( ph  ->  ( sup ( A ,  RR ,  <  )  <_  B  <->  A. z  e.  A  z 
 <_  B ) )
 
Theoremnegiso 8982 Negation is an order anti-isomorphism of the real numbers, which is its own inverse. (Contributed by Mario Carneiro, 24-Dec-2016.)
 |-  F  =  ( x  e.  RR  |->  -u x )   =>    |-  ( F  Isom  <  ,  `'  <  ( RR ,  RR )  /\  `' F  =  F )
 
Theoremdfinfre 8983* The infimum of a set of reals  A. (Contributed by NM, 9-Oct-2005.) (Revised by AV, 4-Sep-2020.)
 |-  ( A  C_  RR  -> inf ( A ,  RR ,  <  )  =  U. { x  e.  RR  |  ( A. y  e.  A  x  <_  y  /\  A. y  e.  RR  ( x  <  y  ->  E. z  e.  A  z  <  y
 ) ) } )
 
Theoremsup3exmid 8984* If any inhabited set of real numbers bounded from above has a supremum, excluded middle follows. (Contributed by Jim Kingdon, 2-Apr-2023.)
 |-  ( ( u  C_  RR  /\  E. w  w  e.  u  /\  E. x  e.  RR  A. y  e.  u  y  <_  x )  ->  E. x  e.  RR  ( A. y  e.  u  -.  x  <  y  /\  A. y  e.  RR  ( y  < 
 x  ->  E. z  e.  u  y  <  z ) ) )   =>    |- DECID  ph
 
4.3.11  Imaginary and complex number properties
 
Theoremcrap0 8985 The real representation of complex numbers is apart from zero iff one of its terms is apart from zero. (Contributed by Jim Kingdon, 5-Mar-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A #  0  \/  B #  0
 ) 
 <->  ( A  +  ( _i  x.  B ) ) #  0 ) )
 
Theoremcreur 8986* The real part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  E! x  e.  RR  E. y  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Theoremcreui 8987* The imaginary part of a complex number is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
 |-  ( A  e.  CC  ->  E! y  e.  RR  E. x  e.  RR  A  =  ( x  +  ( _i  x.  y ) ) )
 
Theoremcju 8988* The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
 |-  ( A  e.  CC  ->  E! x  e.  CC  ( ( A  +  x )  e.  RR  /\  ( _i  x.  ( A  -  x ) )  e.  RR ) )
 
4.3.12  Function operation analogue theorems
 
Theoremofnegsub 8989 Function analogue of negsub 8274. (Contributed by Mario Carneiro, 24-Jul-2014.)
 |-  ( ( A  e.  V  /\  F : A --> CC  /\  G : A --> CC )  ->  ( F  oF  +  (
 ( A  X.  { -u 1 } )  oF  x.  G ) )  =  ( F  oF  -  G ) )
 
4.4  Integer sets
 
4.4.1  Positive integers (as a subset of complex numbers)
 
Syntaxcn 8990 Extend class notation to include the class of positive integers.
 class  NN
 
Definitiondf-inn 8991* Definition of the set of positive integers. For naming consistency with the Metamath Proof Explorer usages should refer to dfnn2 8992 instead. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.) (New usage is discouraged.)
 |- 
 NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }
 
Theoremdfnn2 8992* Definition of the set of positive integers. Another name for df-inn 8991. (Contributed by Jeff Hankins, 12-Sep-2013.) (Revised by Mario Carneiro, 3-May-2014.)
 |- 
 NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1
 )  e.  x ) }
 
Theorempeano5nni 8993* Peano's inductive postulate. Theorem I.36 (principle of mathematical induction) of [Apostol] p. 34. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |-  ( ( 1  e.  A  /\  A. x  e.  A  ( x  +  1 )  e.  A )  ->  NN  C_  A )
 
Theoremnnssre 8994 The positive integers are a subset of the reals. (Contributed by NM, 10-Jan-1997.) (Revised by Mario Carneiro, 16-Jun-2013.)
 |- 
 NN  C_  RR
 
Theoremnnsscn 8995 The positive integers are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
 |- 
 NN  C_  CC
 
Theoremnnex 8996 The set of positive integers exists. (Contributed by NM, 3-Oct-1999.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |- 
 NN  e.  _V
 
Theoremnnre 8997 A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
 |-  ( A  e.  NN  ->  A  e.  RR )
 
Theoremnncn 8998 A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
 |-  ( A  e.  NN  ->  A  e.  CC )
 
Theoremnnrei 8999 A positive integer is a real number. (Contributed by NM, 18-Aug-1999.)
 |-  A  e.  NN   =>    |-  A  e.  RR
 
Theoremnncni 9000 A positive integer is a complex number. (Contributed by NM, 18-Aug-1999.)
 |-  A  e.  NN   =>    |-  A  e.  CC
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15728
  Copyright terms: Public domain < Previous  Next >