| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > arch | Unicode version | ||
| Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| arch |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-arch 8118 |
. . 3
| |
| 2 | dfnn2 9112 |
. . . 4
| |
| 3 | 2 | rexeqi 2733 |
. . 3
|
| 4 | 1, 3 | sylibr 134 |
. 2
|
| 5 | nnre 9117 |
. . . 4
| |
| 6 | ltxrlt 8212 |
. . . 4
| |
| 7 | 5, 6 | sylan2 286 |
. . 3
|
| 8 | 7 | rexbidva 2527 |
. 2
|
| 9 | 4, 8 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 ax-arch 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-xp 4725 df-pnf 8183 df-mnf 8184 df-ltxr 8186 df-inn 9111 |
| This theorem is referenced by: nnrecl 9367 bndndx 9368 btwnz 9566 expnbnd 10885 cvg1nlemres 11496 cvg1n 11497 resqrexlemga 11534 fsum3cvg3 11907 divcnv 12008 efcllem 12170 alzdvds 12365 dvdsbnd 12477 |
| Copyright terms: Public domain | W3C validator |