ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arch Unicode version

Theorem arch 8928
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
arch  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <  n
)
Distinct variable group:    A, n

Proof of Theorem arch
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-arch 7703 . . 3  |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
2 dfnn2 8682 . . . 4  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
32rexeqi 2606 . . 3  |-  ( E. n  e.  NN  A  <RR  n  <->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } A  <RR  n )
41, 3sylibr 133 . 2  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <RR  n )
5 nnre 8687 . . . 4  |-  ( n  e.  NN  ->  n  e.  RR )
6 ltxrlt 7794 . . . 4  |-  ( ( A  e.  RR  /\  n  e.  RR )  ->  ( A  <  n  <->  A 
<RR  n ) )
75, 6sylan2 282 . . 3  |-  ( ( A  e.  RR  /\  n  e.  NN )  ->  ( A  <  n  <->  A 
<RR  n ) )
87rexbidva 2409 . 2  |-  ( A  e.  RR  ->  ( E. n  e.  NN  A  <  n  <->  E. n  e.  NN  A  <RR  n ) )
94, 8mpbird 166 1  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <  n
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1463   {cab 2101   A.wral 2391   E.wrex 2392   |^|cint 3739   class class class wbr 3897  (class class class)co 5740   RRcr 7583   1c1 7585    + caddc 7587    <RR cltrr 7588    < clt 7764   NNcn 8680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4014  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-cnex 7675  ax-resscn 7676  ax-1re 7678  ax-addrcl 7681  ax-arch 7703
This theorem depends on definitions:  df-bi 116  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-rab 2400  df-v 2660  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-br 3898  df-opab 3958  df-xp 4513  df-pnf 7766  df-mnf 7767  df-ltxr 7769  df-inn 8681
This theorem is referenced by:  nnrecl  8929  bndndx  8930  btwnz  9124  expnbnd  10366  cvg1nlemres  10708  cvg1n  10709  resqrexlemga  10746  fsum3cvg3  11116  divcnv  11217  efcllem  11275  alzdvds  11459  dvdsbnd  11552
  Copyright terms: Public domain W3C validator