ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  arch Unicode version

Theorem arch 9366
Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.)
Assertion
Ref Expression
arch  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <  n
)
Distinct variable group:    A, n

Proof of Theorem arch
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-arch 8118 . . 3  |-  ( A  e.  RR  ->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  <RR  n )
2 dfnn2 9112 . . . 4  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
32rexeqi 2733 . . 3  |-  ( E. n  e.  NN  A  <RR  n  <->  E. n  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  (
y  +  1 )  e.  x ) } A  <RR  n )
41, 3sylibr 134 . 2  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <RR  n )
5 nnre 9117 . . . 4  |-  ( n  e.  NN  ->  n  e.  RR )
6 ltxrlt 8212 . . . 4  |-  ( ( A  e.  RR  /\  n  e.  RR )  ->  ( A  <  n  <->  A 
<RR  n ) )
75, 6sylan2 286 . . 3  |-  ( ( A  e.  RR  /\  n  e.  NN )  ->  ( A  <  n  <->  A 
<RR  n ) )
87rexbidva 2527 . 2  |-  ( A  e.  RR  ->  ( E. n  e.  NN  A  <  n  <->  E. n  e.  NN  A  <RR  n ) )
94, 8mpbird 167 1  |-  ( A  e.  RR  ->  E. n  e.  NN  A  <  n
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   |^|cint 3923   class class class wbr 4083  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002    <RR cltrr 8003    < clt 8181   NNcn 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096  ax-arch 8118
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-xp 4725  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111
This theorem is referenced by:  nnrecl  9367  bndndx  9368  btwnz  9566  expnbnd  10885  cvg1nlemres  11496  cvg1n  11497  resqrexlemga  11534  fsum3cvg3  11907  divcnv  12008  efcllem  12170  alzdvds  12365  dvdsbnd  12477
  Copyright terms: Public domain W3C validator