| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > arch | Unicode version | ||
| Description: Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by NM, 21-Jan-1997.) |
| Ref | Expression |
|---|---|
| arch |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-arch 8046 |
. . 3
| |
| 2 | dfnn2 9040 |
. . . 4
| |
| 3 | 2 | rexeqi 2707 |
. . 3
|
| 4 | 1, 3 | sylibr 134 |
. 2
|
| 5 | nnre 9045 |
. . . 4
| |
| 6 | ltxrlt 8140 |
. . . 4
| |
| 7 | 5, 6 | sylan2 286 |
. . 3
|
| 8 | 7 | rexbidva 2503 |
. 2
|
| 9 | 4, 8 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4163 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 ax-arch 8046 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-opab 4107 df-xp 4682 df-pnf 8111 df-mnf 8112 df-ltxr 8114 df-inn 9039 |
| This theorem is referenced by: nnrecl 9295 bndndx 9296 btwnz 9494 expnbnd 10810 cvg1nlemres 11329 cvg1n 11330 resqrexlemga 11367 fsum3cvg3 11740 divcnv 11841 efcllem 12003 alzdvds 12198 dvdsbnd 12310 |
| Copyright terms: Public domain | W3C validator |