ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caucvgre Unicode version

Theorem caucvgre 10945
Description: Convergence of real sequences.

A Cauchy sequence (as defined here, which has a rate of convergence built in) of real numbers converges to a real number. Specifically on rate of convergence, all terms after the nth term must be within  1  /  n of the nth term.

(Contributed by Jim Kingdon, 19-Jul-2021.)

Hypotheses
Ref Expression
caucvgre.f  |-  ( ph  ->  F : NN --> RR )
caucvgre.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
Assertion
Ref Expression
caucvgre  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Distinct variable groups:    i, F, j, x, y    k, F, i, x, y    n, F, k    ph, k, n    ph, x, y
Allowed substitution hints:    ph( i, j)

Proof of Theorem caucvgre
Dummy variables  m  r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 8880 . . . 4  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
2 caucvgre.f . . . 4  |-  ( ph  ->  F : NN --> RR )
3 caucvgre.cau . . . . 5  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( 1  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( 1  /  n ) ) ) )
42, 3caucvgrelemcau 10944 . . . 4  |-  ( ph  ->  A. n  e.  NN  A. k  e.  NN  (
n  <RR  k  ->  (
( F `  n
)  <RR  ( ( F `
 k )  +  ( iota_ r  e.  RR  ( n  x.  r
)  =  1 ) )  /\  ( F `
 k )  <RR  ( ( F `  n
)  +  ( iota_ r  e.  RR  ( n  x.  r )  =  1 ) ) ) ) )
51, 2, 4ax-caucvg 7894 . . 3  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) ) ) )
6 ralrp 9632 . . . . 5  |-  ( A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  <->  A. x  e.  RR  ( 0  <  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) ) )
7 0re 7920 . . . . . . . 8  |-  0  e.  RR
8 ltxrlt 7985 . . . . . . . 8  |-  ( ( 0  e.  RR  /\  x  e.  RR )  ->  ( 0  <  x  <->  0 
<RR  x ) )
97, 8mpan 422 . . . . . . 7  |-  ( x  e.  RR  ->  (
0  <  x  <->  0  <RR  x ) )
109imbi1d 230 . . . . . 6  |-  ( x  e.  RR  ->  (
( 0  <  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) )  <-> 
( 0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) ) ) )
1110ralbiia 2484 . . . . 5  |-  ( A. x  e.  RR  (
0  <  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) )  <->  A. x  e.  RR  ( 0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) ) )
126, 11bitri 183 . . . 4  |-  ( A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  <->  A. x  e.  RR  ( 0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) ) ) )
1312rexbii 2477 . . 3  |-  ( E. y  e.  RR  A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  <->  E. y  e.  RR  A. x  e.  RR  (
0  <RR  x  ->  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) ) ) )
145, 13sylibr 133 . 2  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) ) )
15 simpr 109 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  m  e.  NN )
1615peano2nnd 8893 . . . . . . . . 9  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( m  + 
1 )  e.  NN )
17 uznnssnn 9536 . . . . . . . . 9  |-  ( ( m  +  1 )  e.  NN  ->  ( ZZ>=
`  ( m  + 
1 ) )  C_  NN )
18 ssralv 3211 . . . . . . . . 9  |-  ( (
ZZ>= `  ( m  + 
1 ) )  C_  NN  ->  ( A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. k  e.  ( ZZ>= `  ( m  +  1 ) ) ( m  <RR  k  -> 
( ( F `  k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `
 k )  +  x ) ) ) ) )
1916, 17, 183syl 17 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. k  e.  ( ZZ>= `  ( m  +  1 ) ) ( m  <RR  k  -> 
( ( F `  k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `
 k )  +  x ) ) ) ) )
20 eluznn 9559 . . . . . . . . . . . . . 14  |-  ( ( ( m  +  1 )  e.  NN  /\  k  e.  ( ZZ>= `  ( m  +  1
) ) )  -> 
k  e.  NN )
2116, 20sylan 281 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  k  e.  NN )
22 simplr 525 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  m  e.  NN )
2322peano2nnd 8893 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  + 
1 )  e.  NN )
2423nnzd 9333 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  + 
1 )  e.  ZZ )
25 eluz1 9491 . . . . . . . . . . . . . . . 16  |-  ( ( m  +  1 )  e.  ZZ  ->  (
k  e.  ( ZZ>= `  ( m  +  1
) )  <->  ( k  e.  ZZ  /\  ( m  +  1 )  <_ 
k ) ) )
2624, 25syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( k  e.  ( ZZ>= `  ( m  +  1 ) )  <-> 
( k  e.  ZZ  /\  ( m  +  1 )  <_  k )
) )
2726biimpd 143 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( k  e.  ( ZZ>= `  ( m  +  1 ) )  ->  ( k  e.  ZZ  /\  ( m  +  1 )  <_ 
k ) ) )
2827impancom 258 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( k  e.  NN  ->  ( k  e.  ZZ  /\  ( m  +  1 )  <_ 
k ) ) )
2921, 28mpd 13 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( k  e.  ZZ  /\  ( m  +  1 )  <_ 
k ) )
3029simprd 113 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( m  + 
1 )  <_  k
)
31 nnre 8885 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR )
3231ad2antlr 486 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  m  e.  RR )
33 simpr 109 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  k  e.  NN )
3433nnred 8891 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  k  e.  RR )
35 1re 7919 . . . . . . . . . . . . . . 15  |-  1  e.  RR
36 ltadd1 8348 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  RR  /\  k  e.  RR  /\  1  e.  RR )  ->  (
m  <  k  <->  ( m  +  1 )  < 
( k  +  1 ) ) )
3735, 36mp3an3 1321 . . . . . . . . . . . . . 14  |-  ( ( m  e.  RR  /\  k  e.  RR )  ->  ( m  <  k  <->  ( m  +  1 )  <  ( k  +  1 ) ) )
3832, 34, 37syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  < 
k  <->  ( m  + 
1 )  <  (
k  +  1 ) ) )
39 nnleltp1 9271 . . . . . . . . . . . . . 14  |-  ( ( ( m  +  1 )  e.  NN  /\  k  e.  NN )  ->  ( ( m  + 
1 )  <_  k  <->  ( m  +  1 )  <  ( k  +  1 ) ) )
4023, 33, 39syl2anc 409 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( m  +  1 )  <_ 
k  <->  ( m  + 
1 )  <  (
k  +  1 ) ) )
4138, 40bitr4d 190 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  < 
k  <->  ( m  + 
1 )  <_  k
) )
4221, 41syldan 280 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( m  < 
k  <->  ( m  + 
1 )  <_  k
) )
4330, 42mpbird 166 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  m  <  k
)
44 nnre 8885 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  k  e.  RR )
45 ltxrlt 7985 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  RR  /\  k  e.  RR )  ->  ( m  <  k  <->  m 
<RR  k ) )
4631, 44, 45syl2an 287 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN  /\  k  e.  NN )  ->  ( m  <  k  <->  m 
<RR  k ) )
4746adantll 473 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( m  < 
k  <->  m  <RR  k ) )
482ad4antr 491 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  F : NN --> RR )
4948, 33ffvelrnd 5632 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( F `  k )  e.  RR )
50 simpllr 529 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  y  e.  RR )
5150adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  y  e.  RR )
52 rpre 9617 . . . . . . . . . . . . . . . . 17  |-  ( x  e.  RR+  ->  x  e.  RR )
5352ad3antlr 490 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  x  e.  RR )
5451, 53readdcld 7949 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( y  +  x )  e.  RR )
55 ltxrlt 7985 . . . . . . . . . . . . . . 15  |-  ( ( ( F `  k
)  e.  RR  /\  ( y  +  x
)  e.  RR )  ->  ( ( F `
 k )  < 
( y  +  x
)  <->  ( F `  k )  <RR  ( y  +  x ) ) )
5649, 54, 55syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( F `
 k )  < 
( y  +  x
)  <->  ( F `  k )  <RR  ( y  +  x ) ) )
5749, 53readdcld 7949 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( F `
 k )  +  x )  e.  RR )
58 ltxrlt 7985 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  RR  /\  ( ( F `  k )  +  x
)  e.  RR )  ->  ( y  < 
( ( F `  k )  +  x
)  <->  y  <RR  ( ( F `  k )  +  x ) ) )
5951, 57, 58syl2anc 409 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( y  < 
( ( F `  k )  +  x
)  <->  y  <RR  ( ( F `  k )  +  x ) ) )
6056, 59anbi12d 470 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( ( F `  k )  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) )  <->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) )
6147, 60imbi12d 233 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( m  <  k  ->  (
( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) )  <->  ( m  <RR  k  ->  ( ( F `  k )  <RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) ) ) )
6261biimprd 157 . . . . . . . . . . 11  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  NN )  ->  ( ( m 
<RR  k  ->  ( ( F `  k ) 
<RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) )  ->  (
m  <  k  ->  ( ( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) ) ) )
6321, 62syldan 280 . . . . . . . . . 10  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( ( m 
<RR  k  ->  ( ( F `  k ) 
<RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) )  ->  (
m  <  k  ->  ( ( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) ) ) )
6443, 63mpid 42 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  k  e.  (
ZZ>= `  ( m  + 
1 ) ) )  ->  ( ( m 
<RR  k  ->  ( ( F `  k ) 
<RR  ( y  +  x
)  /\  y  <RR  ( ( F `  k
)  +  x ) ) )  ->  (
( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) ) )
6564ralimdva 2537 . . . . . . . 8  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  ( m  +  1 ) ) ( m  <RR  k  -> 
( ( F `  k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `
 k )  +  x ) ) )  ->  A. k  e.  (
ZZ>= `  ( m  + 
1 ) ) ( ( F `  k
)  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) ) ) )
6619, 65syld 45 . . . . . . 7  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. k  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  k )  <  (
y  +  x )  /\  y  <  (
( F `  k
)  +  x ) ) ) )
67 fveq2 5496 . . . . . . . . . 10  |-  ( k  =  i  ->  ( F `  k )  =  ( F `  i ) )
6867breq1d 3999 . . . . . . . . 9  |-  ( k  =  i  ->  (
( F `  k
)  <  ( y  +  x )  <->  ( F `  i )  <  (
y  +  x ) ) )
6967oveq1d 5868 . . . . . . . . . 10  |-  ( k  =  i  ->  (
( F `  k
)  +  x )  =  ( ( F `
 i )  +  x ) )
7069breq2d 4001 . . . . . . . . 9  |-  ( k  =  i  ->  (
y  <  ( ( F `  k )  +  x )  <->  y  <  ( ( F `  i
)  +  x ) ) )
7168, 70anbi12d 470 . . . . . . . 8  |-  ( k  =  i  ->  (
( ( F `  k )  <  (
y  +  x )  /\  y  <  (
( F `  k
)  +  x ) )  <->  ( ( F `
 i )  < 
( y  +  x
)  /\  y  <  ( ( F `  i
)  +  x ) ) ) )
7271cbvralv 2696 . . . . . . 7  |-  ( A. k  e.  ( ZZ>= `  ( m  +  1
) ) ( ( F `  k )  <  ( y  +  x )  /\  y  <  ( ( F `  k )  +  x
) )  <->  A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
7366, 72syl6ib 160 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
7473reximdva 2572 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  ->  ( E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) )  ->  E. m  e.  NN  A. i  e.  ( ZZ>= `  ( m  +  1
) ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) ) ) )
75 fveq2 5496 . . . . . . . . . 10  |-  ( j  =  ( m  + 
1 )  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  ( m  +  1 ) ) )
7675raleqdv 2671 . . . . . . . . 9  |-  ( j  =  ( m  + 
1 )  ->  ( A. i  e.  ( ZZ>=
`  j ) ( ( F `  i
)  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) )  <->  A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
7776rspcev 2834 . . . . . . . 8  |-  ( ( ( m  +  1 )  e.  NN  /\  A. i  e.  ( ZZ>= `  ( m  +  1
) ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) ) )
7816, 77sylan 281 . . . . . . 7  |-  ( ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  /\  A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
7978ex 114 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  /\  m  e.  NN )  ->  ( A. i  e.  ( ZZ>= `  ( m  +  1 ) ) ( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
8079rexlimdva 2587 . . . . 5  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  ->  ( E. m  e.  NN  A. i  e.  ( ZZ>= `  ( m  +  1
) ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
8174, 80syld 45 . . . 4  |-  ( ( ( ph  /\  y  e.  RR )  /\  x  e.  RR+ )  ->  ( E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) )  ->  E. j  e.  NN  A. i  e.  ( ZZ>= `  j ) ( ( F `  i )  <  ( y  +  x )  /\  y  <  ( ( F `  i )  +  x
) ) ) )
8281ralimdva 2537 . . 3  |-  ( (
ph  /\  y  e.  RR )  ->  ( A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  ( m  <RR  k  ->  ( ( F `
 k )  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x ) ) )  ->  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
8382reximdva 2572 . 2  |-  ( ph  ->  ( E. y  e.  RR  A. x  e.  RR+  E. m  e.  NN  A. k  e.  NN  (
m  <RR  k  ->  (
( F `  k
)  <RR  ( y  +  x )  /\  y  <RR  ( ( F `  k )  +  x
) ) )  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) ) )
8414, 83mpd 13 1  |-  ( ph  ->  E. y  e.  RR  A. x  e.  RR+  E. j  e.  NN  A. i  e.  ( ZZ>= `  j )
( ( F `  i )  <  (
y  +  x )  /\  y  <  (
( F `  i
)  +  x ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   E.wrex 2449    C_ wss 3121   class class class wbr 3989   -->wf 5194   ` cfv 5198  (class class class)co 5853   RRcr 7773   0cc0 7774   1c1 7775    + caddc 7777    <RR cltrr 7778    < clt 7954    <_ cle 7955    / cdiv 8589   NNcn 8878   ZZcz 9212   ZZ>=cuz 9487   RR+crp 9610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-caucvg 7894
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611
This theorem is referenced by:  cvg1nlemres  10949
  Copyright terms: Public domain W3C validator