ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nn Unicode version

Theorem peano2nn 8845
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )

Proof of Theorem peano2nn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 8835 . . . . . 6  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21eleq2i 2224 . . . . 5  |-  ( A  e.  NN  <->  A  e.  |^|
{ x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
3 elintg 3815 . . . . 5  |-  ( A  e.  NN  ->  ( A  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z ) )
42, 3syl5bb 191 . . . 4  |-  ( A  e.  NN  ->  ( A  e.  NN  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z ) )
54ibi 175 . . 3  |-  ( A  e.  NN  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z )
6 vex 2715 . . . . . . . 8  |-  z  e. 
_V
7 eleq2 2221 . . . . . . . . 9  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
8 eleq2 2221 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
98raleqbi1dv 2660 . . . . . . . . 9  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
107, 9anbi12d 465 . . . . . . . 8  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
116, 10elab 2856 . . . . . . 7  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )
1211simprbi 273 . . . . . 6  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  A. y  e.  z  ( y  +  1 )  e.  z )
13 oveq1 5831 . . . . . . . 8  |-  ( y  =  A  ->  (
y  +  1 )  =  ( A  + 
1 ) )
1413eleq1d 2226 . . . . . . 7  |-  ( y  =  A  ->  (
( y  +  1 )  e.  z  <->  ( A  +  1 )  e.  z ) )
1514rspcva 2814 . . . . . 6  |-  ( ( A  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  -> 
( A  +  1 )  e.  z )
1612, 15sylan2 284 . . . . 5  |-  ( ( A  e.  z  /\  z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )  ->  ( A  + 
1 )  e.  z )
1716expcom 115 . . . 4  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  ( A  e.  z  ->  ( A  +  1 )  e.  z ) )
1817ralimia 2518 . . 3  |-  ( A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z )
195, 18syl 14 . 2  |-  ( A  e.  NN  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z )
20 nnre 8840 . . . 4  |-  ( A  e.  NN  ->  A  e.  RR )
21 1red 7893 . . . 4  |-  ( A  e.  NN  ->  1  e.  RR )
2220, 21readdcld 7907 . . 3  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  RR )
231eleq2i 2224 . . . 4  |-  ( ( A  +  1 )  e.  NN  <->  ( A  +  1 )  e. 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
24 elintg 3815 . . . 4  |-  ( ( A  +  1 )  e.  RR  ->  (
( A  +  1 )  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
2523, 24syl5bb 191 . . 3  |-  ( ( A  +  1 )  e.  RR  ->  (
( A  +  1 )  e.  NN  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
2622, 25syl 14 . 2  |-  ( A  e.  NN  ->  (
( A  +  1 )  e.  NN  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
2719, 26mpbird 166 1  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   {cab 2143   A.wral 2435   |^|cint 3807  (class class class)co 5824   RRcr 7731   1c1 7733    + caddc 7735   NNcn 8833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139  ax-sep 4082  ax-cnex 7823  ax-resscn 7824  ax-1re 7826  ax-addrcl 7829
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-br 3966  df-iota 5135  df-fv 5178  df-ov 5827  df-inn 8834
This theorem is referenced by:  peano2nnd  8848  nnind  8849  nnaddcl  8853  2nn  8994  3nn  8995  4nn  8996  5nn  8997  6nn  8998  7nn  8999  8nn  9000  9nn  9001  nneoor  9266  10nn  9310  nnsplit  10036  fzonn0p1p1  10112  expp1  10426  facp1  10604  resqrexlemfp1  10909  resqrexlemcalc3  10916  trireciplem  11397  trirecip  11398  cvgratnnlemnexp  11421  cvgratz  11429  nno  11797  nnoddm1d2  11801  rplpwr  11911  prmind2  11997  sqrt2irr  12037
  Copyright terms: Public domain W3C validator