| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > peano2nn | Unicode version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) | 
| Ref | Expression | 
|---|---|
| peano2nn | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfnn2 8992 | 
. . . . . 6
 | |
| 2 | 1 | eleq2i 2263 | 
. . . . 5
 | 
| 3 | elintg 3882 | 
. . . . 5
 | |
| 4 | 2, 3 | bitrid 192 | 
. . . 4
 | 
| 5 | 4 | ibi 176 | 
. . 3
 | 
| 6 | vex 2766 | 
. . . . . . . 8
 | |
| 7 | eleq2 2260 | 
. . . . . . . . 9
 | |
| 8 | eleq2 2260 | 
. . . . . . . . . 10
 | |
| 9 | 8 | raleqbi1dv 2705 | 
. . . . . . . . 9
 | 
| 10 | 7, 9 | anbi12d 473 | 
. . . . . . . 8
 | 
| 11 | 6, 10 | elab 2908 | 
. . . . . . 7
 | 
| 12 | 11 | simprbi 275 | 
. . . . . 6
 | 
| 13 | oveq1 5929 | 
. . . . . . . 8
 | |
| 14 | 13 | eleq1d 2265 | 
. . . . . . 7
 | 
| 15 | 14 | rspcva 2866 | 
. . . . . 6
 | 
| 16 | 12, 15 | sylan2 286 | 
. . . . 5
 | 
| 17 | 16 | expcom 116 | 
. . . 4
 | 
| 18 | 17 | ralimia 2558 | 
. . 3
 | 
| 19 | 5, 18 | syl 14 | 
. 2
 | 
| 20 | nnre 8997 | 
. . . 4
 | |
| 21 | 1red 8041 | 
. . . 4
 | |
| 22 | 20, 21 | readdcld 8056 | 
. . 3
 | 
| 23 | 1 | eleq2i 2263 | 
. . . 4
 | 
| 24 | elintg 3882 | 
. . . 4
 | |
| 25 | 23, 24 | bitrid 192 | 
. . 3
 | 
| 26 | 22, 25 | syl 14 | 
. 2
 | 
| 27 | 19, 26 | mpbird 167 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4151 ax-cnex 7970 ax-resscn 7971 ax-1re 7973 ax-addrcl 7976 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-inn 8991 | 
| This theorem is referenced by: peano2nnd 9005 nnind 9006 nnaddcl 9010 2nn 9152 3nn 9153 4nn 9154 5nn 9155 6nn 9156 7nn 9157 8nn 9158 9nn 9159 nneoor 9428 10nn 9472 nnsplit 10212 fzonn0p1p1 10289 expp1 10638 facp1 10822 resqrexlemfp1 11174 resqrexlemcalc3 11181 trireciplem 11665 trirecip 11666 cvgratnnlemnexp 11689 cvgratz 11697 nno 12071 nnoddm1d2 12075 rplpwr 12194 prmind2 12288 sqrt2irr 12330 pcmpt 12512 pockthi 12527 dec5nprm 12583 mulgnnp1 13260 2sqlem10 15366 | 
| Copyright terms: Public domain | W3C validator |