| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn | Unicode version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano2nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9112 |
. . . . . 6
| |
| 2 | 1 | eleq2i 2296 |
. . . . 5
|
| 3 | elintg 3931 |
. . . . 5
| |
| 4 | 2, 3 | bitrid 192 |
. . . 4
|
| 5 | 4 | ibi 176 |
. . 3
|
| 6 | vex 2802 |
. . . . . . . 8
| |
| 7 | eleq2 2293 |
. . . . . . . . 9
| |
| 8 | eleq2 2293 |
. . . . . . . . . 10
| |
| 9 | 8 | raleqbi1dv 2740 |
. . . . . . . . 9
|
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . 8
|
| 11 | 6, 10 | elab 2947 |
. . . . . . 7
|
| 12 | 11 | simprbi 275 |
. . . . . 6
|
| 13 | oveq1 6008 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2298 |
. . . . . . 7
|
| 15 | 14 | rspcva 2905 |
. . . . . 6
|
| 16 | 12, 15 | sylan2 286 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 17 | ralimia 2591 |
. . 3
|
| 19 | 5, 18 | syl 14 |
. 2
|
| 20 | nnre 9117 |
. . . 4
| |
| 21 | 1red 8161 |
. . . 4
| |
| 22 | 20, 21 | readdcld 8176 |
. . 3
|
| 23 | 1 | eleq2i 2296 |
. . . 4
|
| 24 | elintg 3931 |
. . . 4
| |
| 25 | 23, 24 | bitrid 192 |
. . 3
|
| 26 | 22, 25 | syl 14 |
. 2
|
| 27 | 19, 26 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-sep 4202 ax-cnex 8090 ax-resscn 8091 ax-1re 8093 ax-addrcl 8096 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-inn 9111 |
| This theorem is referenced by: peano2nnd 9125 nnind 9126 nnaddcl 9130 2nn 9272 3nn 9273 4nn 9274 5nn 9275 6nn 9276 7nn 9277 8nn 9278 9nn 9279 nneoor 9549 10nn 9593 nnsplit 10333 fzonn0p1p1 10419 expp1 10768 facp1 10952 resqrexlemfp1 11520 resqrexlemcalc3 11527 trireciplem 12011 trirecip 12012 cvgratnnlemnexp 12035 cvgratz 12043 nno 12417 nnoddm1d2 12421 rplpwr 12548 prmind2 12642 sqrt2irr 12684 pcmpt 12866 pockthi 12881 dec5nprm 12937 mulgnnp1 13667 2sqlem10 15804 |
| Copyright terms: Public domain | W3C validator |