Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2nn | Unicode version |
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
Ref | Expression |
---|---|
peano2nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnn2 8859 | . . . . . 6 | |
2 | 1 | eleq2i 2233 | . . . . 5 |
3 | elintg 3832 | . . . . 5 | |
4 | 2, 3 | syl5bb 191 | . . . 4 |
5 | 4 | ibi 175 | . . 3 |
6 | vex 2729 | . . . . . . . 8 | |
7 | eleq2 2230 | . . . . . . . . 9 | |
8 | eleq2 2230 | . . . . . . . . . 10 | |
9 | 8 | raleqbi1dv 2669 | . . . . . . . . 9 |
10 | 7, 9 | anbi12d 465 | . . . . . . . 8 |
11 | 6, 10 | elab 2870 | . . . . . . 7 |
12 | 11 | simprbi 273 | . . . . . 6 |
13 | oveq1 5849 | . . . . . . . 8 | |
14 | 13 | eleq1d 2235 | . . . . . . 7 |
15 | 14 | rspcva 2828 | . . . . . 6 |
16 | 12, 15 | sylan2 284 | . . . . 5 |
17 | 16 | expcom 115 | . . . 4 |
18 | 17 | ralimia 2527 | . . 3 |
19 | 5, 18 | syl 14 | . 2 |
20 | nnre 8864 | . . . 4 | |
21 | 1red 7914 | . . . 4 | |
22 | 20, 21 | readdcld 7928 | . . 3 |
23 | 1 | eleq2i 2233 | . . . 4 |
24 | elintg 3832 | . . . 4 | |
25 | 23, 24 | syl5bb 191 | . . 3 |
26 | 22, 25 | syl 14 | . 2 |
27 | 19, 26 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 wral 2444 cint 3824 (class class class)co 5842 cr 7752 c1 7754 caddc 7756 cn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 ax-sep 4100 ax-cnex 7844 ax-resscn 7845 ax-1re 7847 ax-addrcl 7850 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-iota 5153 df-fv 5196 df-ov 5845 df-inn 8858 |
This theorem is referenced by: peano2nnd 8872 nnind 8873 nnaddcl 8877 2nn 9018 3nn 9019 4nn 9020 5nn 9021 6nn 9022 7nn 9023 8nn 9024 9nn 9025 nneoor 9293 10nn 9337 nnsplit 10072 fzonn0p1p1 10148 expp1 10462 facp1 10643 resqrexlemfp1 10951 resqrexlemcalc3 10958 trireciplem 11441 trirecip 11442 cvgratnnlemnexp 11465 cvgratz 11473 nno 11843 nnoddm1d2 11847 rplpwr 11960 prmind2 12052 sqrt2irr 12094 pcmpt 12273 pockthi 12288 2sqlem10 13611 |
Copyright terms: Public domain | W3C validator |