| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn | Unicode version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano2nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9009 |
. . . . . 6
| |
| 2 | 1 | eleq2i 2263 |
. . . . 5
|
| 3 | elintg 3883 |
. . . . 5
| |
| 4 | 2, 3 | bitrid 192 |
. . . 4
|
| 5 | 4 | ibi 176 |
. . 3
|
| 6 | vex 2766 |
. . . . . . . 8
| |
| 7 | eleq2 2260 |
. . . . . . . . 9
| |
| 8 | eleq2 2260 |
. . . . . . . . . 10
| |
| 9 | 8 | raleqbi1dv 2705 |
. . . . . . . . 9
|
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . 8
|
| 11 | 6, 10 | elab 2908 |
. . . . . . 7
|
| 12 | 11 | simprbi 275 |
. . . . . 6
|
| 13 | oveq1 5932 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2265 |
. . . . . . 7
|
| 15 | 14 | rspcva 2866 |
. . . . . 6
|
| 16 | 12, 15 | sylan2 286 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 17 | ralimia 2558 |
. . 3
|
| 19 | 5, 18 | syl 14 |
. 2
|
| 20 | nnre 9014 |
. . . 4
| |
| 21 | 1red 8058 |
. . . 4
| |
| 22 | 20, 21 | readdcld 8073 |
. . 3
|
| 23 | 1 | eleq2i 2263 |
. . . 4
|
| 24 | elintg 3883 |
. . . 4
| |
| 25 | 23, 24 | bitrid 192 |
. . 3
|
| 26 | 22, 25 | syl 14 |
. 2
|
| 27 | 19, 26 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-sep 4152 ax-cnex 7987 ax-resscn 7988 ax-1re 7990 ax-addrcl 7993 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-iota 5220 df-fv 5267 df-ov 5928 df-inn 9008 |
| This theorem is referenced by: peano2nnd 9022 nnind 9023 nnaddcl 9027 2nn 9169 3nn 9170 4nn 9171 5nn 9172 6nn 9173 7nn 9174 8nn 9175 9nn 9176 nneoor 9445 10nn 9489 nnsplit 10229 fzonn0p1p1 10306 expp1 10655 facp1 10839 resqrexlemfp1 11191 resqrexlemcalc3 11198 trireciplem 11682 trirecip 11683 cvgratnnlemnexp 11706 cvgratz 11714 nno 12088 nnoddm1d2 12092 rplpwr 12219 prmind2 12313 sqrt2irr 12355 pcmpt 12537 pockthi 12552 dec5nprm 12608 mulgnnp1 13336 2sqlem10 15450 |
| Copyright terms: Public domain | W3C validator |