| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn | Unicode version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano2nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9040 |
. . . . . 6
| |
| 2 | 1 | eleq2i 2272 |
. . . . 5
|
| 3 | elintg 3893 |
. . . . 5
| |
| 4 | 2, 3 | bitrid 192 |
. . . 4
|
| 5 | 4 | ibi 176 |
. . 3
|
| 6 | vex 2775 |
. . . . . . . 8
| |
| 7 | eleq2 2269 |
. . . . . . . . 9
| |
| 8 | eleq2 2269 |
. . . . . . . . . 10
| |
| 9 | 8 | raleqbi1dv 2714 |
. . . . . . . . 9
|
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . 8
|
| 11 | 6, 10 | elab 2917 |
. . . . . . 7
|
| 12 | 11 | simprbi 275 |
. . . . . 6
|
| 13 | oveq1 5953 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2274 |
. . . . . . 7
|
| 15 | 14 | rspcva 2875 |
. . . . . 6
|
| 16 | 12, 15 | sylan2 286 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 17 | ralimia 2567 |
. . 3
|
| 19 | 5, 18 | syl 14 |
. 2
|
| 20 | nnre 9045 |
. . . 4
| |
| 21 | 1red 8089 |
. . . 4
| |
| 22 | 20, 21 | readdcld 8104 |
. . 3
|
| 23 | 1 | eleq2i 2272 |
. . . 4
|
| 24 | elintg 3893 |
. . . 4
| |
| 25 | 23, 24 | bitrid 192 |
. . 3
|
| 26 | 22, 25 | syl 14 |
. 2
|
| 27 | 19, 26 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4163 ax-cnex 8018 ax-resscn 8019 ax-1re 8021 ax-addrcl 8024 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4046 df-iota 5233 df-fv 5280 df-ov 5949 df-inn 9039 |
| This theorem is referenced by: peano2nnd 9053 nnind 9054 nnaddcl 9058 2nn 9200 3nn 9201 4nn 9202 5nn 9203 6nn 9204 7nn 9205 8nn 9206 9nn 9207 nneoor 9477 10nn 9521 nnsplit 10261 fzonn0p1p1 10344 expp1 10693 facp1 10877 resqrexlemfp1 11353 resqrexlemcalc3 11360 trireciplem 11844 trirecip 11845 cvgratnnlemnexp 11868 cvgratz 11876 nno 12250 nnoddm1d2 12254 rplpwr 12381 prmind2 12475 sqrt2irr 12517 pcmpt 12699 pockthi 12714 dec5nprm 12770 mulgnnp1 13499 2sqlem10 15635 |
| Copyright terms: Public domain | W3C validator |