| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn | Unicode version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano2nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9038 |
. . . . . 6
| |
| 2 | 1 | eleq2i 2272 |
. . . . 5
|
| 3 | elintg 3893 |
. . . . 5
| |
| 4 | 2, 3 | bitrid 192 |
. . . 4
|
| 5 | 4 | ibi 176 |
. . 3
|
| 6 | vex 2775 |
. . . . . . . 8
| |
| 7 | eleq2 2269 |
. . . . . . . . 9
| |
| 8 | eleq2 2269 |
. . . . . . . . . 10
| |
| 9 | 8 | raleqbi1dv 2714 |
. . . . . . . . 9
|
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . 8
|
| 11 | 6, 10 | elab 2917 |
. . . . . . 7
|
| 12 | 11 | simprbi 275 |
. . . . . 6
|
| 13 | oveq1 5951 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2274 |
. . . . . . 7
|
| 15 | 14 | rspcva 2875 |
. . . . . 6
|
| 16 | 12, 15 | sylan2 286 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 17 | ralimia 2567 |
. . 3
|
| 19 | 5, 18 | syl 14 |
. 2
|
| 20 | nnre 9043 |
. . . 4
| |
| 21 | 1red 8087 |
. . . 4
| |
| 22 | 20, 21 | readdcld 8102 |
. . 3
|
| 23 | 1 | eleq2i 2272 |
. . . 4
|
| 24 | elintg 3893 |
. . . 4
| |
| 25 | 23, 24 | bitrid 192 |
. . 3
|
| 26 | 22, 25 | syl 14 |
. 2
|
| 27 | 19, 26 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-sep 4162 ax-cnex 8016 ax-resscn 8017 ax-1re 8019 ax-addrcl 8022 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-un 3170 df-in 3172 df-ss 3179 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-iota 5232 df-fv 5279 df-ov 5947 df-inn 9037 |
| This theorem is referenced by: peano2nnd 9051 nnind 9052 nnaddcl 9056 2nn 9198 3nn 9199 4nn 9200 5nn 9201 6nn 9202 7nn 9203 8nn 9204 9nn 9205 nneoor 9475 10nn 9519 nnsplit 10259 fzonn0p1p1 10342 expp1 10691 facp1 10875 resqrexlemfp1 11320 resqrexlemcalc3 11327 trireciplem 11811 trirecip 11812 cvgratnnlemnexp 11835 cvgratz 11843 nno 12217 nnoddm1d2 12221 rplpwr 12348 prmind2 12442 sqrt2irr 12484 pcmpt 12666 pockthi 12681 dec5nprm 12737 mulgnnp1 13466 2sqlem10 15602 |
| Copyright terms: Public domain | W3C validator |