ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nn Unicode version

Theorem peano2nn 9122
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )

Proof of Theorem peano2nn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 9112 . . . . . 6  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21eleq2i 2296 . . . . 5  |-  ( A  e.  NN  <->  A  e.  |^|
{ x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
3 elintg 3931 . . . . 5  |-  ( A  e.  NN  ->  ( A  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z ) )
42, 3bitrid 192 . . . 4  |-  ( A  e.  NN  ->  ( A  e.  NN  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z ) )
54ibi 176 . . 3  |-  ( A  e.  NN  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z )
6 vex 2802 . . . . . . . 8  |-  z  e. 
_V
7 eleq2 2293 . . . . . . . . 9  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
8 eleq2 2293 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
98raleqbi1dv 2740 . . . . . . . . 9  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
107, 9anbi12d 473 . . . . . . . 8  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
116, 10elab 2947 . . . . . . 7  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )
1211simprbi 275 . . . . . 6  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  A. y  e.  z  ( y  +  1 )  e.  z )
13 oveq1 6008 . . . . . . . 8  |-  ( y  =  A  ->  (
y  +  1 )  =  ( A  + 
1 ) )
1413eleq1d 2298 . . . . . . 7  |-  ( y  =  A  ->  (
( y  +  1 )  e.  z  <->  ( A  +  1 )  e.  z ) )
1514rspcva 2905 . . . . . 6  |-  ( ( A  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  -> 
( A  +  1 )  e.  z )
1612, 15sylan2 286 . . . . 5  |-  ( ( A  e.  z  /\  z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )  ->  ( A  + 
1 )  e.  z )
1716expcom 116 . . . 4  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  ( A  e.  z  ->  ( A  +  1 )  e.  z ) )
1817ralimia 2591 . . 3  |-  ( A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z )
195, 18syl 14 . 2  |-  ( A  e.  NN  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z )
20 nnre 9117 . . . 4  |-  ( A  e.  NN  ->  A  e.  RR )
21 1red 8161 . . . 4  |-  ( A  e.  NN  ->  1  e.  RR )
2220, 21readdcld 8176 . . 3  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  RR )
231eleq2i 2296 . . . 4  |-  ( ( A  +  1 )  e.  NN  <->  ( A  +  1 )  e. 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
24 elintg 3931 . . . 4  |-  ( ( A  +  1 )  e.  RR  ->  (
( A  +  1 )  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
2523, 24bitrid 192 . . 3  |-  ( ( A  +  1 )  e.  RR  ->  (
( A  +  1 )  e.  NN  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
2622, 25syl 14 . 2  |-  ( A  e.  NN  ->  (
( A  +  1 )  e.  NN  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
2719, 26mpbird 167 1  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   |^|cint 3923  (class class class)co 6001   RRcr 7998   1c1 8000    + caddc 8002   NNcn 9110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-sep 4202  ax-cnex 8090  ax-resscn 8091  ax-1re 8093  ax-addrcl 8096
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004  df-inn 9111
This theorem is referenced by:  peano2nnd  9125  nnind  9126  nnaddcl  9130  2nn  9272  3nn  9273  4nn  9274  5nn  9275  6nn  9276  7nn  9277  8nn  9278  9nn  9279  nneoor  9549  10nn  9593  nnsplit  10333  fzonn0p1p1  10419  expp1  10768  facp1  10952  resqrexlemfp1  11520  resqrexlemcalc3  11527  trireciplem  12011  trirecip  12012  cvgratnnlemnexp  12035  cvgratz  12043  nno  12417  nnoddm1d2  12421  rplpwr  12548  prmind2  12642  sqrt2irr  12684  pcmpt  12866  pockthi  12881  dec5nprm  12937  mulgnnp1  13667  2sqlem10  15804
  Copyright terms: Public domain W3C validator