ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2nn Unicode version

Theorem peano2nn 8406
Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
peano2nn  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )

Proof of Theorem peano2nn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfnn2 8396 . . . . . 6  |-  NN  =  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }
21eleq2i 2154 . . . . 5  |-  ( A  e.  NN  <->  A  e.  |^|
{ x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
3 elintg 3691 . . . . 5  |-  ( A  e.  NN  ->  ( A  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z ) )
42, 3syl5bb 190 . . . 4  |-  ( A  e.  NN  ->  ( A  e.  NN  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z ) )
54ibi 174 . . 3  |-  ( A  e.  NN  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z )
6 vex 2622 . . . . . . . 8  |-  z  e. 
_V
7 eleq2 2151 . . . . . . . . 9  |-  ( x  =  z  ->  (
1  e.  x  <->  1  e.  z ) )
8 eleq2 2151 . . . . . . . . . 10  |-  ( x  =  z  ->  (
( y  +  1 )  e.  x  <->  ( y  +  1 )  e.  z ) )
98raleqbi1dv 2570 . . . . . . . . 9  |-  ( x  =  z  ->  ( A. y  e.  x  ( y  +  1 )  e.  x  <->  A. y  e.  z  ( y  +  1 )  e.  z ) )
107, 9anbi12d 457 . . . . . . . 8  |-  ( x  =  z  ->  (
( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x )  <-> 
( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) ) )
116, 10elab 2758 . . . . . . 7  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  ( 1  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z ) )
1211simprbi 269 . . . . . 6  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  A. y  e.  z  ( y  +  1 )  e.  z )
13 oveq1 5641 . . . . . . . 8  |-  ( y  =  A  ->  (
y  +  1 )  =  ( A  + 
1 ) )
1413eleq1d 2156 . . . . . . 7  |-  ( y  =  A  ->  (
( y  +  1 )  e.  z  <->  ( A  +  1 )  e.  z ) )
1514rspcva 2720 . . . . . 6  |-  ( ( A  e.  z  /\  A. y  e.  z  ( y  +  1 )  e.  z )  -> 
( A  +  1 )  e.  z )
1612, 15sylan2 280 . . . . 5  |-  ( ( A  e.  z  /\  z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )  ->  ( A  + 
1 )  e.  z )
1716expcom 114 . . . 4  |-  ( z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ->  ( A  e.  z  ->  ( A  +  1 )  e.  z ) )
1817ralimia 2436 . . 3  |-  ( A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } A  e.  z  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z )
195, 18syl 14 . 2  |-  ( A  e.  NN  ->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z )
20 nnre 8401 . . . 4  |-  ( A  e.  NN  ->  A  e.  RR )
21 1red 7482 . . . 4  |-  ( A  e.  NN  ->  1  e.  RR )
2220, 21readdcld 7496 . . 3  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  RR )
231eleq2i 2154 . . . 4  |-  ( ( A  +  1 )  e.  NN  <->  ( A  +  1 )  e. 
|^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) } )
24 elintg 3691 . . . 4  |-  ( ( A  +  1 )  e.  RR  ->  (
( A  +  1 )  e.  |^| { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
2523, 24syl5bb 190 . . 3  |-  ( ( A  +  1 )  e.  RR  ->  (
( A  +  1 )  e.  NN  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
2622, 25syl 14 . 2  |-  ( A  e.  NN  ->  (
( A  +  1 )  e.  NN  <->  A. z  e.  { x  |  ( 1  e.  x  /\  A. y  e.  x  ( y  +  1 )  e.  x ) }  ( A  +  1 )  e.  z ) )
2719, 26mpbird 165 1  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   {cab 2074   A.wral 2359   |^|cint 3683  (class class class)co 5634   RRcr 7328   1c1 7330    + caddc 7332   NNcn 8394
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-cnex 7415  ax-resscn 7416  ax-1re 7418  ax-addrcl 7421
This theorem depends on definitions:  df-bi 115  df-3an 926  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ral 2364  df-rex 2365  df-v 2621  df-un 3001  df-in 3003  df-ss 3010  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-br 3838  df-iota 4967  df-fv 5010  df-ov 5637  df-inn 8395
This theorem is referenced by:  peano2nnd  8409  nnind  8410  nnaddcl  8414  2nn  8547  3nn  8548  4nn  8549  5nn  8550  6nn  8551  7nn  8552  8nn  8553  9nn  8554  nneoor  8818  10nn  8861  nnsplit  9513  fzonn0p1p1  9589  expp1  9927  facp1  10103  resqrexlemfp1  10407  resqrexlemcalc3  10414  trireciplem  10855  trirecip  10856  cvgratnnlemnexp  10879  cvgratz  10887  nno  10999  nnoddm1d2  11003  rplpwr  11109  prmind2  11195  sqrt2irr  11234
  Copyright terms: Public domain W3C validator