| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2nn | Unicode version | ||
| Description: Peano postulate: a successor of a positive integer is a positive integer. (Contributed by NM, 11-Jan-1997.) (Revised by Mario Carneiro, 17-Nov-2014.) |
| Ref | Expression |
|---|---|
| peano2nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9073 |
. . . . . 6
| |
| 2 | 1 | eleq2i 2274 |
. . . . 5
|
| 3 | elintg 3907 |
. . . . 5
| |
| 4 | 2, 3 | bitrid 192 |
. . . 4
|
| 5 | 4 | ibi 176 |
. . 3
|
| 6 | vex 2779 |
. . . . . . . 8
| |
| 7 | eleq2 2271 |
. . . . . . . . 9
| |
| 8 | eleq2 2271 |
. . . . . . . . . 10
| |
| 9 | 8 | raleqbi1dv 2717 |
. . . . . . . . 9
|
| 10 | 7, 9 | anbi12d 473 |
. . . . . . . 8
|
| 11 | 6, 10 | elab 2924 |
. . . . . . 7
|
| 12 | 11 | simprbi 275 |
. . . . . 6
|
| 13 | oveq1 5974 |
. . . . . . . 8
| |
| 14 | 13 | eleq1d 2276 |
. . . . . . 7
|
| 15 | 14 | rspcva 2882 |
. . . . . 6
|
| 16 | 12, 15 | sylan2 286 |
. . . . 5
|
| 17 | 16 | expcom 116 |
. . . 4
|
| 18 | 17 | ralimia 2569 |
. . 3
|
| 19 | 5, 18 | syl 14 |
. 2
|
| 20 | nnre 9078 |
. . . 4
| |
| 21 | 1red 8122 |
. . . 4
| |
| 22 | 20, 21 | readdcld 8137 |
. . 3
|
| 23 | 1 | eleq2i 2274 |
. . . 4
|
| 24 | elintg 3907 |
. . . 4
| |
| 25 | 23, 24 | bitrid 192 |
. . 3
|
| 26 | 22, 25 | syl 14 |
. 2
|
| 27 | 19, 26 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-sep 4178 ax-cnex 8051 ax-resscn 8052 ax-1re 8054 ax-addrcl 8057 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-un 3178 df-in 3180 df-ss 3187 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-iota 5251 df-fv 5298 df-ov 5970 df-inn 9072 |
| This theorem is referenced by: peano2nnd 9086 nnind 9087 nnaddcl 9091 2nn 9233 3nn 9234 4nn 9235 5nn 9236 6nn 9237 7nn 9238 8nn 9239 9nn 9240 nneoor 9510 10nn 9554 nnsplit 10294 fzonn0p1p1 10379 expp1 10728 facp1 10912 resqrexlemfp1 11435 resqrexlemcalc3 11442 trireciplem 11926 trirecip 11927 cvgratnnlemnexp 11950 cvgratz 11958 nno 12332 nnoddm1d2 12336 rplpwr 12463 prmind2 12557 sqrt2irr 12599 pcmpt 12781 pockthi 12796 dec5nprm 12852 mulgnnp1 13581 2sqlem10 15717 |
| Copyright terms: Public domain | W3C validator |