| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn | Unicode version | ||
| Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| Ref | Expression |
|---|---|
| 1nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 8992 |
. . . 4
| |
| 2 | 1 | eleq2i 2263 |
. . 3
|
| 3 | 1re 8025 |
. . . 4
| |
| 4 | elintg 3882 |
. . . 4
| |
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | 2, 5 | bitri 184 |
. 2
|
| 7 | vex 2766 |
. . . 4
| |
| 8 | eleq2 2260 |
. . . . 5
| |
| 9 | eleq2 2260 |
. . . . . 6
| |
| 10 | 9 | raleqbi1dv 2705 |
. . . . 5
|
| 11 | 8, 10 | anbi12d 473 |
. . . 4
|
| 12 | 7, 11 | elab 2908 |
. . 3
|
| 13 | 12 | simplbi 274 |
. 2
|
| 14 | 6, 13 | mprgbir 2555 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7973 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-int 3875 df-inn 8991 |
| This theorem is referenced by: nnind 9006 nn1suc 9009 2nn 9152 1nn0 9265 nn0p1nn 9288 1z 9352 neg1z 9358 elz2 9397 nneoor 9428 9p1e10 9459 indstr 9667 elnn1uz2 9681 zq 9700 qreccl 9716 fz01or 10186 exp3vallem 10632 exp1 10637 nnexpcl 10644 expnbnd 10755 3dec 10806 fac1 10821 faccl 10827 faclbnd3 10835 fiubnn 10922 resqrexlemf1 11173 resqrexlemcalc3 11181 resqrexlemnmsq 11182 resqrexlemnm 11183 resqrexlemcvg 11184 resqrexlemglsq 11187 resqrexlemga 11188 sumsnf 11574 cvgratnnlemnexp 11689 cvgratnnlemfm 11694 cvgratnnlemrate 11695 cvgratnn 11696 prodsnf 11757 fprodnncl 11775 eftlub 11855 eirraplem 11942 n2dvds1 12077 ndvdsp1 12097 5ndvds6 12100 gcd1 12154 bezoutr1 12200 ncoprmgcdne1b 12257 1nprm 12282 1idssfct 12283 isprm2lem 12284 qden1elz 12373 phicl2 12382 phi1 12387 phiprm 12391 eulerthlema 12398 pcpre1 12461 pczpre 12466 pcmptcl 12511 pcmpt 12512 infpnlem2 12529 mul4sq 12563 exmidunben 12643 nninfdc 12670 base0 12728 baseval 12731 baseid 12732 basendx 12733 basendxnn 12734 1strstrg 12794 2strstrg 12796 basendxnplusgndx 12802 basendxnmulrndx 12811 rngstrg 12812 lmodstrd 12841 topgrpstrd 12873 basendxltdsndx 12892 dsndxnplusgndx 12894 dsndxnmulrndx 12895 slotsdnscsi 12896 dsndxntsetndx 12897 slotsdifdsndx 12898 basendxltunifndx 12902 unifndxntsetndx 12904 slotsdifunifndx 12905 mulg1 13259 mulg2 13261 mulgnndir 13281 setsmsdsg 14716 perfectlem1 15235 perfectlem2 15236 lgsdir2lem1 15269 lgsdir2lem4 15272 lgsdir2lem5 15273 lgsdir 15276 lgsne0 15279 lgs1 15285 lgsquad2lem2 15323 trilpolemgt1 15683 |
| Copyright terms: Public domain | W3C validator |