| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn | Unicode version | ||
| Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| Ref | Expression |
|---|---|
| 1nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9073 |
. . . 4
| |
| 2 | 1 | eleq2i 2274 |
. . 3
|
| 3 | 1re 8106 |
. . . 4
| |
| 4 | elintg 3907 |
. . . 4
| |
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | 2, 5 | bitri 184 |
. 2
|
| 7 | vex 2779 |
. . . 4
| |
| 8 | eleq2 2271 |
. . . . 5
| |
| 9 | eleq2 2271 |
. . . . . 6
| |
| 10 | 9 | raleqbi1dv 2717 |
. . . . 5
|
| 11 | 8, 10 | anbi12d 473 |
. . . 4
|
| 12 | 7, 11 | elab 2924 |
. . 3
|
| 13 | 12 | simplbi 274 |
. 2
|
| 14 | 6, 13 | mprgbir 2566 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 ax-1re 8054 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-v 2778 df-int 3900 df-inn 9072 |
| This theorem is referenced by: nnind 9087 nn1suc 9090 2nn 9233 1nn0 9346 nn0p1nn 9369 1z 9433 neg1z 9439 elz2 9479 nneoor 9510 9p1e10 9541 indstr 9749 elnn1uz2 9763 zq 9782 qreccl 9798 fz01or 10268 exp3vallem 10722 exp1 10727 nnexpcl 10734 expnbnd 10845 3dec 10896 fac1 10911 faccl 10917 faclbnd3 10925 fiubnn 11012 lsw0 11078 cats1un 11212 resqrexlemf1 11434 resqrexlemcalc3 11442 resqrexlemnmsq 11443 resqrexlemnm 11444 resqrexlemcvg 11445 resqrexlemglsq 11448 resqrexlemga 11449 sumsnf 11835 cvgratnnlemnexp 11950 cvgratnnlemfm 11955 cvgratnnlemrate 11956 cvgratnn 11957 prodsnf 12018 fprodnncl 12036 eftlub 12116 eirraplem 12203 n2dvds1 12338 ndvdsp1 12358 5ndvds6 12361 gcd1 12423 bezoutr1 12469 ncoprmgcdne1b 12526 1nprm 12551 1idssfct 12552 isprm2lem 12553 qden1elz 12642 phicl2 12651 phi1 12656 phiprm 12660 eulerthlema 12667 pcpre1 12730 pczpre 12735 pcmptcl 12780 pcmpt 12781 infpnlem2 12798 mul4sq 12832 exmidunben 12912 nninfdc 12939 base0 12997 baseval 13000 baseid 13001 basendx 13002 basendxnn 13003 1strstrg 13063 2strstrg 13066 basendxnplusgndx 13072 basendxnmulrndx 13081 rngstrg 13082 lmodstrd 13111 topgrpstrd 13143 ocndx 13158 ocid 13159 basendxnocndx 13160 plendxnocndx 13161 basendxltdsndx 13166 dsndxnplusgndx 13168 dsndxnmulrndx 13169 slotsdnscsi 13170 dsndxntsetndx 13171 slotsdifdsndx 13172 basendxltunifndx 13176 unifndxntsetndx 13178 slotsdifunifndx 13179 mulg1 13580 mulg2 13582 mulgnndir 13602 setsmsdsg 15067 perfectlem1 15586 perfectlem2 15587 lgsdir2lem1 15620 lgsdir2lem4 15623 lgsdir2lem5 15624 lgsdir 15627 lgsne0 15630 lgs1 15636 lgsquad2lem2 15674 basendxltedgfndx 15724 trilpolemgt1 16180 |
| Copyright terms: Public domain | W3C validator |