| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn | Unicode version | ||
| Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| Ref | Expression |
|---|---|
| 1nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9009 |
. . . 4
| |
| 2 | 1 | eleq2i 2263 |
. . 3
|
| 3 | 1re 8042 |
. . . 4
| |
| 4 | elintg 3883 |
. . . 4
| |
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | 2, 5 | bitri 184 |
. 2
|
| 7 | vex 2766 |
. . . 4
| |
| 8 | eleq2 2260 |
. . . . 5
| |
| 9 | eleq2 2260 |
. . . . . 6
| |
| 10 | 9 | raleqbi1dv 2705 |
. . . . 5
|
| 11 | 8, 10 | anbi12d 473 |
. . . 4
|
| 12 | 7, 11 | elab 2908 |
. . 3
|
| 13 | 12 | simplbi 274 |
. 2
|
| 14 | 6, 13 | mprgbir 2555 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-1re 7990 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-int 3876 df-inn 9008 |
| This theorem is referenced by: nnind 9023 nn1suc 9026 2nn 9169 1nn0 9282 nn0p1nn 9305 1z 9369 neg1z 9375 elz2 9414 nneoor 9445 9p1e10 9476 indstr 9684 elnn1uz2 9698 zq 9717 qreccl 9733 fz01or 10203 exp3vallem 10649 exp1 10654 nnexpcl 10661 expnbnd 10772 3dec 10823 fac1 10838 faccl 10844 faclbnd3 10852 fiubnn 10939 resqrexlemf1 11190 resqrexlemcalc3 11198 resqrexlemnmsq 11199 resqrexlemnm 11200 resqrexlemcvg 11201 resqrexlemglsq 11204 resqrexlemga 11205 sumsnf 11591 cvgratnnlemnexp 11706 cvgratnnlemfm 11711 cvgratnnlemrate 11712 cvgratnn 11713 prodsnf 11774 fprodnncl 11792 eftlub 11872 eirraplem 11959 n2dvds1 12094 ndvdsp1 12114 5ndvds6 12117 gcd1 12179 bezoutr1 12225 ncoprmgcdne1b 12282 1nprm 12307 1idssfct 12308 isprm2lem 12309 qden1elz 12398 phicl2 12407 phi1 12412 phiprm 12416 eulerthlema 12423 pcpre1 12486 pczpre 12491 pcmptcl 12536 pcmpt 12537 infpnlem2 12554 mul4sq 12588 exmidunben 12668 nninfdc 12695 base0 12753 baseval 12756 baseid 12757 basendx 12758 basendxnn 12759 1strstrg 12819 2strstrg 12821 basendxnplusgndx 12827 basendxnmulrndx 12836 rngstrg 12837 lmodstrd 12866 topgrpstrd 12898 ocndx 12913 ocid 12914 basendxnocndx 12915 plendxnocndx 12916 basendxltdsndx 12921 dsndxnplusgndx 12923 dsndxnmulrndx 12924 slotsdnscsi 12925 dsndxntsetndx 12926 slotsdifdsndx 12927 basendxltunifndx 12931 unifndxntsetndx 12933 slotsdifunifndx 12934 mulg1 13335 mulg2 13337 mulgnndir 13357 setsmsdsg 14800 perfectlem1 15319 perfectlem2 15320 lgsdir2lem1 15353 lgsdir2lem4 15356 lgsdir2lem5 15357 lgsdir 15360 lgsne0 15363 lgs1 15369 lgsquad2lem2 15407 trilpolemgt1 15770 |
| Copyright terms: Public domain | W3C validator |