Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1nn | Unicode version |
Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
Ref | Expression |
---|---|
1nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnn2 8892 | . . . 4 | |
2 | 1 | eleq2i 2242 | . . 3 |
3 | 1re 7931 | . . . 4 | |
4 | elintg 3848 | . . . 4 | |
5 | 3, 4 | ax-mp 5 | . . 3 |
6 | 2, 5 | bitri 184 | . 2 |
7 | vex 2738 | . . . 4 | |
8 | eleq2 2239 | . . . . 5 | |
9 | eleq2 2239 | . . . . . 6 | |
10 | 9 | raleqbi1dv 2678 | . . . . 5 |
11 | 8, 10 | anbi12d 473 | . . . 4 |
12 | 7, 11 | elab 2879 | . . 3 |
13 | 12 | simplbi 274 | . 2 |
14 | 6, 13 | mprgbir 2533 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 wcel 2146 cab 2161 wral 2453 cint 3840 (class class class)co 5865 cr 7785 c1 7787 caddc 7789 cn 8890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 ax-1re 7880 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-int 3841 df-inn 8891 |
This theorem is referenced by: nnind 8906 nn1suc 8909 2nn 9051 1nn0 9163 nn0p1nn 9186 1z 9250 neg1z 9256 elz2 9295 nneoor 9326 9p1e10 9357 indstr 9564 elnn1uz2 9578 zq 9597 qreccl 9613 fz01or 10079 exp3vallem 10489 exp1 10494 nnexpcl 10501 expnbnd 10611 3dec 10660 fac1 10675 faccl 10681 faclbnd3 10689 fiubnn 10776 resqrexlemf1 10983 resqrexlemcalc3 10991 resqrexlemnmsq 10992 resqrexlemnm 10993 resqrexlemcvg 10994 resqrexlemglsq 10997 resqrexlemga 10998 sumsnf 11383 cvgratnnlemnexp 11498 cvgratnnlemfm 11503 cvgratnnlemrate 11504 cvgratnn 11505 prodsnf 11566 fprodnncl 11584 eftlub 11664 eirraplem 11750 n2dvds1 11882 ndvdsp1 11902 gcd1 11953 bezoutr1 11999 ncoprmgcdne1b 12054 1nprm 12079 1idssfct 12080 isprm2lem 12081 qden1elz 12170 phicl2 12179 phi1 12184 phiprm 12188 eulerthlema 12195 pcpre1 12257 pczpre 12262 pcmptcl 12305 pcmpt 12306 infpnlem2 12323 mul4sq 12357 exmidunben 12392 nninfdc 12419 base0 12476 baseval 12479 baseid 12480 basendx 12481 basendxnn 12482 1strstrg 12527 2strstrg 12529 basendxnplusgndx 12535 basendxnmulrndx 12543 rngstrg 12544 lmodstrd 12565 topgrpstrd 12590 basendxltdsndx 12601 dsndxnplusgndx 12603 dsndxnmulrndx 12604 slotsdnscsi 12605 dsndxntsetndx 12606 slotsdifdsndx 12607 mulg1 12849 mulg2 12851 mulgnndir 12870 setsmsdsg 13549 lgsdir2lem1 13998 lgsdir2lem4 14001 lgsdir2lem5 14002 lgsdir 14005 lgsne0 14008 lgs1 14014 trilpolemgt1 14346 |
Copyright terms: Public domain | W3C validator |