![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1nn | Unicode version |
Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
Ref | Expression |
---|---|
1nn |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnn2 8986 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | eleq2i 2260 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 1re 8020 |
. . . 4
![]() ![]() ![]() ![]() | |
4 | elintg 3879 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | ax-mp 5 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
6 | 2, 5 | bitri 184 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
7 | vex 2763 |
. . . 4
![]() ![]() ![]() ![]() | |
8 | eleq2 2257 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | eleq2 2257 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | 9 | raleqbi1dv 2702 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 8, 10 | anbi12d 473 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7, 11 | elab 2905 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 12 | simplbi 274 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | 6, 13 | mprgbir 2552 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 ax-1re 7968 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-v 2762 df-int 3872 df-inn 8985 |
This theorem is referenced by: nnind 9000 nn1suc 9003 2nn 9146 1nn0 9259 nn0p1nn 9282 1z 9346 neg1z 9352 elz2 9391 nneoor 9422 9p1e10 9453 indstr 9661 elnn1uz2 9675 zq 9694 qreccl 9710 fz01or 10180 exp3vallem 10614 exp1 10619 nnexpcl 10626 expnbnd 10737 3dec 10788 fac1 10803 faccl 10809 faclbnd3 10817 fiubnn 10904 resqrexlemf1 11155 resqrexlemcalc3 11163 resqrexlemnmsq 11164 resqrexlemnm 11165 resqrexlemcvg 11166 resqrexlemglsq 11169 resqrexlemga 11170 sumsnf 11555 cvgratnnlemnexp 11670 cvgratnnlemfm 11675 cvgratnnlemrate 11676 cvgratnn 11677 prodsnf 11738 fprodnncl 11756 eftlub 11836 eirraplem 11923 n2dvds1 12056 ndvdsp1 12076 gcd1 12127 bezoutr1 12173 ncoprmgcdne1b 12230 1nprm 12255 1idssfct 12256 isprm2lem 12257 qden1elz 12346 phicl2 12355 phi1 12360 phiprm 12364 eulerthlema 12371 pcpre1 12433 pczpre 12438 pcmptcl 12483 pcmpt 12484 infpnlem2 12501 mul4sq 12535 exmidunben 12586 nninfdc 12613 base0 12671 baseval 12674 baseid 12675 basendx 12676 basendxnn 12677 1strstrg 12737 2strstrg 12739 basendxnplusgndx 12745 basendxnmulrndx 12754 rngstrg 12755 lmodstrd 12784 topgrpstrd 12816 basendxltdsndx 12835 dsndxnplusgndx 12837 dsndxnmulrndx 12838 slotsdnscsi 12839 dsndxntsetndx 12840 slotsdifdsndx 12841 basendxltunifndx 12845 unifndxntsetndx 12847 slotsdifunifndx 12848 mulg1 13202 mulg2 13204 mulgnndir 13224 setsmsdsg 14659 lgsdir2lem1 15185 lgsdir2lem4 15188 lgsdir2lem5 15189 lgsdir 15192 lgsne0 15195 lgs1 15201 lgsquad2lem2 15239 trilpolemgt1 15599 |
Copyright terms: Public domain | W3C validator |