| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn | Unicode version | ||
| Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| Ref | Expression |
|---|---|
| 1nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9112 |
. . . 4
| |
| 2 | 1 | eleq2i 2296 |
. . 3
|
| 3 | 1re 8145 |
. . . 4
| |
| 4 | elintg 3931 |
. . . 4
| |
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | 2, 5 | bitri 184 |
. 2
|
| 7 | vex 2802 |
. . . 4
| |
| 8 | eleq2 2293 |
. . . . 5
| |
| 9 | eleq2 2293 |
. . . . . 6
| |
| 10 | 9 | raleqbi1dv 2740 |
. . . . 5
|
| 11 | 8, 10 | anbi12d 473 |
. . . 4
|
| 12 | 7, 11 | elab 2947 |
. . 3
|
| 13 | 12 | simplbi 274 |
. 2
|
| 14 | 6, 13 | mprgbir 2588 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-1re 8093 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-int 3924 df-inn 9111 |
| This theorem is referenced by: nnind 9126 nn1suc 9129 2nn 9272 1nn0 9385 nn0p1nn 9408 1z 9472 neg1z 9478 elz2 9518 nneoor 9549 9p1e10 9580 indstr 9788 elnn1uz2 9802 zq 9821 qreccl 9837 fz01or 10307 exp3vallem 10762 exp1 10767 nnexpcl 10774 expnbnd 10885 3dec 10936 fac1 10951 faccl 10957 faclbnd3 10965 fiubnn 11052 lsw0 11119 cats1un 11253 cats1fvn 11296 cats1fvnd 11297 resqrexlemf1 11519 resqrexlemcalc3 11527 resqrexlemnmsq 11528 resqrexlemnm 11529 resqrexlemcvg 11530 resqrexlemglsq 11533 resqrexlemga 11534 sumsnf 11920 cvgratnnlemnexp 12035 cvgratnnlemfm 12040 cvgratnnlemrate 12041 cvgratnn 12042 prodsnf 12103 fprodnncl 12121 eftlub 12201 eirraplem 12288 n2dvds1 12423 ndvdsp1 12443 5ndvds6 12446 gcd1 12508 bezoutr1 12554 ncoprmgcdne1b 12611 1nprm 12636 1idssfct 12637 isprm2lem 12638 qden1elz 12727 phicl2 12736 phi1 12741 phiprm 12745 eulerthlema 12752 pcpre1 12815 pczpre 12820 pcmptcl 12865 pcmpt 12866 infpnlem2 12883 mul4sq 12917 exmidunben 12997 nninfdc 13024 base0 13082 baseval 13085 baseid 13086 basendx 13087 basendxnn 13088 1strstrg 13149 2strstrg 13152 basendxnplusgndx 13158 basendxnmulrndx 13167 rngstrg 13168 lmodstrd 13197 topgrpstrd 13229 ocndx 13244 ocid 13245 basendxnocndx 13246 plendxnocndx 13247 basendxltdsndx 13252 dsndxnplusgndx 13254 dsndxnmulrndx 13255 slotsdnscsi 13256 dsndxntsetndx 13257 slotsdifdsndx 13258 basendxltunifndx 13262 unifndxntsetndx 13264 slotsdifunifndx 13265 mulg1 13666 mulg2 13668 mulgnndir 13688 setsmsdsg 15154 perfectlem1 15673 perfectlem2 15674 lgsdir2lem1 15707 lgsdir2lem4 15710 lgsdir2lem5 15711 lgsdir 15714 lgsne0 15717 lgs1 15723 lgsquad2lem2 15761 basendxltedgfndx 15811 trilpolemgt1 16407 |
| Copyright terms: Public domain | W3C validator |