| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn | Unicode version | ||
| Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| Ref | Expression |
|---|---|
| 1nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9038 |
. . . 4
| |
| 2 | 1 | eleq2i 2272 |
. . 3
|
| 3 | 1re 8071 |
. . . 4
| |
| 4 | elintg 3893 |
. . . 4
| |
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | 2, 5 | bitri 184 |
. 2
|
| 7 | vex 2775 |
. . . 4
| |
| 8 | eleq2 2269 |
. . . . 5
| |
| 9 | eleq2 2269 |
. . . . . 6
| |
| 10 | 9 | raleqbi1dv 2714 |
. . . . 5
|
| 11 | 8, 10 | anbi12d 473 |
. . . 4
|
| 12 | 7, 11 | elab 2917 |
. . 3
|
| 13 | 12 | simplbi 274 |
. 2
|
| 14 | 6, 13 | mprgbir 2564 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1re 8019 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-int 3886 df-inn 9037 |
| This theorem is referenced by: nnind 9052 nn1suc 9055 2nn 9198 1nn0 9311 nn0p1nn 9334 1z 9398 neg1z 9404 elz2 9444 nneoor 9475 9p1e10 9506 indstr 9714 elnn1uz2 9728 zq 9747 qreccl 9763 fz01or 10233 exp3vallem 10685 exp1 10690 nnexpcl 10697 expnbnd 10808 3dec 10859 fac1 10874 faccl 10880 faclbnd3 10888 fiubnn 10975 lsw0 11041 resqrexlemf1 11319 resqrexlemcalc3 11327 resqrexlemnmsq 11328 resqrexlemnm 11329 resqrexlemcvg 11330 resqrexlemglsq 11333 resqrexlemga 11334 sumsnf 11720 cvgratnnlemnexp 11835 cvgratnnlemfm 11840 cvgratnnlemrate 11841 cvgratnn 11842 prodsnf 11903 fprodnncl 11921 eftlub 12001 eirraplem 12088 n2dvds1 12223 ndvdsp1 12243 5ndvds6 12246 gcd1 12308 bezoutr1 12354 ncoprmgcdne1b 12411 1nprm 12436 1idssfct 12437 isprm2lem 12438 qden1elz 12527 phicl2 12536 phi1 12541 phiprm 12545 eulerthlema 12552 pcpre1 12615 pczpre 12620 pcmptcl 12665 pcmpt 12666 infpnlem2 12683 mul4sq 12717 exmidunben 12797 nninfdc 12824 base0 12882 baseval 12885 baseid 12886 basendx 12887 basendxnn 12888 1strstrg 12948 2strstrg 12951 basendxnplusgndx 12957 basendxnmulrndx 12966 rngstrg 12967 lmodstrd 12996 topgrpstrd 13028 ocndx 13043 ocid 13044 basendxnocndx 13045 plendxnocndx 13046 basendxltdsndx 13051 dsndxnplusgndx 13053 dsndxnmulrndx 13054 slotsdnscsi 13055 dsndxntsetndx 13056 slotsdifdsndx 13057 basendxltunifndx 13061 unifndxntsetndx 13063 slotsdifunifndx 13064 mulg1 13465 mulg2 13467 mulgnndir 13487 setsmsdsg 14952 perfectlem1 15471 perfectlem2 15472 lgsdir2lem1 15505 lgsdir2lem4 15508 lgsdir2lem5 15509 lgsdir 15512 lgsne0 15515 lgs1 15521 lgsquad2lem2 15559 basendxltedgfndx 15609 trilpolemgt1 15978 |
| Copyright terms: Public domain | W3C validator |