Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1nn | Unicode version |
Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
Ref | Expression |
---|---|
1nn |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfnn2 8880 | . . . 4 | |
2 | 1 | eleq2i 2237 | . . 3 |
3 | 1re 7919 | . . . 4 | |
4 | elintg 3839 | . . . 4 | |
5 | 3, 4 | ax-mp 5 | . . 3 |
6 | 2, 5 | bitri 183 | . 2 |
7 | vex 2733 | . . . 4 | |
8 | eleq2 2234 | . . . . 5 | |
9 | eleq2 2234 | . . . . . 6 | |
10 | 9 | raleqbi1dv 2673 | . . . . 5 |
11 | 8, 10 | anbi12d 470 | . . . 4 |
12 | 7, 11 | elab 2874 | . . 3 |
13 | 12 | simplbi 272 | . 2 |
14 | 6, 13 | mprgbir 2528 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wcel 2141 cab 2156 wral 2448 cint 3831 (class class class)co 5853 cr 7773 c1 7775 caddc 7777 cn 8878 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-1re 7868 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-int 3832 df-inn 8879 |
This theorem is referenced by: nnind 8894 nn1suc 8897 2nn 9039 1nn0 9151 nn0p1nn 9174 1z 9238 neg1z 9244 elz2 9283 nneoor 9314 9p1e10 9345 indstr 9552 elnn1uz2 9566 zq 9585 qreccl 9601 fz01or 10067 exp3vallem 10477 exp1 10482 nnexpcl 10489 expnbnd 10599 3dec 10648 fac1 10663 faccl 10669 faclbnd3 10677 fiubnn 10765 resqrexlemf1 10972 resqrexlemcalc3 10980 resqrexlemnmsq 10981 resqrexlemnm 10982 resqrexlemcvg 10983 resqrexlemglsq 10986 resqrexlemga 10987 sumsnf 11372 cvgratnnlemnexp 11487 cvgratnnlemfm 11492 cvgratnnlemrate 11493 cvgratnn 11494 prodsnf 11555 fprodnncl 11573 eftlub 11653 eirraplem 11739 n2dvds1 11871 ndvdsp1 11891 gcd1 11942 bezoutr1 11988 ncoprmgcdne1b 12043 1nprm 12068 1idssfct 12069 isprm2lem 12070 qden1elz 12159 phicl2 12168 phi1 12173 phiprm 12177 eulerthlema 12184 pcpre1 12246 pczpre 12251 pcmptcl 12294 pcmpt 12295 infpnlem2 12312 mul4sq 12346 exmidunben 12381 nninfdc 12408 base0 12465 baseval 12468 baseid 12469 basendx 12470 basendxnn 12471 1strstrg 12516 2strstrg 12518 basendxnplusgndx 12524 basendxnmulrndx 12532 rngstrg 12533 lmodstrd 12551 topgrpstrd 12569 setsmsdsg 13274 lgsdir2lem1 13723 lgsdir2lem4 13726 lgsdir2lem5 13727 lgsdir 13730 lgsne0 13733 lgs1 13739 trilpolemgt1 14071 |
Copyright terms: Public domain | W3C validator |