| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1nn | Unicode version | ||
| Description: Peano postulate: 1 is a positive integer. (Contributed by NM, 11-Jan-1997.) |
| Ref | Expression |
|---|---|
| 1nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfnn2 9040 |
. . . 4
| |
| 2 | 1 | eleq2i 2272 |
. . 3
|
| 3 | 1re 8073 |
. . . 4
| |
| 4 | elintg 3893 |
. . . 4
| |
| 5 | 3, 4 | ax-mp 5 |
. . 3
|
| 6 | 2, 5 | bitri 184 |
. 2
|
| 7 | vex 2775 |
. . . 4
| |
| 8 | eleq2 2269 |
. . . . 5
| |
| 9 | eleq2 2269 |
. . . . . 6
| |
| 10 | 9 | raleqbi1dv 2714 |
. . . . 5
|
| 11 | 8, 10 | anbi12d 473 |
. . . 4
|
| 12 | 7, 11 | elab 2917 |
. . 3
|
| 13 | 12 | simplbi 274 |
. 2
|
| 14 | 6, 13 | mprgbir 2564 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 ax-1re 8021 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-int 3886 df-inn 9039 |
| This theorem is referenced by: nnind 9054 nn1suc 9057 2nn 9200 1nn0 9313 nn0p1nn 9336 1z 9400 neg1z 9406 elz2 9446 nneoor 9477 9p1e10 9508 indstr 9716 elnn1uz2 9730 zq 9749 qreccl 9765 fz01or 10235 exp3vallem 10687 exp1 10692 nnexpcl 10699 expnbnd 10810 3dec 10861 fac1 10876 faccl 10882 faclbnd3 10890 fiubnn 10977 lsw0 11043 resqrexlemf1 11352 resqrexlemcalc3 11360 resqrexlemnmsq 11361 resqrexlemnm 11362 resqrexlemcvg 11363 resqrexlemglsq 11366 resqrexlemga 11367 sumsnf 11753 cvgratnnlemnexp 11868 cvgratnnlemfm 11873 cvgratnnlemrate 11874 cvgratnn 11875 prodsnf 11936 fprodnncl 11954 eftlub 12034 eirraplem 12121 n2dvds1 12256 ndvdsp1 12276 5ndvds6 12279 gcd1 12341 bezoutr1 12387 ncoprmgcdne1b 12444 1nprm 12469 1idssfct 12470 isprm2lem 12471 qden1elz 12560 phicl2 12569 phi1 12574 phiprm 12578 eulerthlema 12585 pcpre1 12648 pczpre 12653 pcmptcl 12698 pcmpt 12699 infpnlem2 12716 mul4sq 12750 exmidunben 12830 nninfdc 12857 base0 12915 baseval 12918 baseid 12919 basendx 12920 basendxnn 12921 1strstrg 12981 2strstrg 12984 basendxnplusgndx 12990 basendxnmulrndx 12999 rngstrg 13000 lmodstrd 13029 topgrpstrd 13061 ocndx 13076 ocid 13077 basendxnocndx 13078 plendxnocndx 13079 basendxltdsndx 13084 dsndxnplusgndx 13086 dsndxnmulrndx 13087 slotsdnscsi 13088 dsndxntsetndx 13089 slotsdifdsndx 13090 basendxltunifndx 13094 unifndxntsetndx 13096 slotsdifunifndx 13097 mulg1 13498 mulg2 13500 mulgnndir 13520 setsmsdsg 14985 perfectlem1 15504 perfectlem2 15505 lgsdir2lem1 15538 lgsdir2lem4 15541 lgsdir2lem5 15542 lgsdir 15545 lgsne0 15548 lgs1 15554 lgsquad2lem2 15592 basendxltedgfndx 15642 trilpolemgt1 16015 |
| Copyright terms: Public domain | W3C validator |