| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbii | Unicode version | ||
| Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1627 |
. 2
| |
| 2 | exbii.1 |
. 2
| |
| 3 | 1, 2 | mpg 1474 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2exbii 1629 3exbii 1630 exancom 1631 excom13 1712 exrot4 1714 eeor 1718 sbcof2 1833 sbequ8 1870 sbidm 1874 sborv 1914 19.41vv 1927 19.41vvv 1928 19.41vvvv 1929 exdistr 1933 19.42vvv 1936 exdistr2 1938 3exdistr 1939 4exdistr 1940 eean 1959 eeeanv 1961 ee4anv 1962 2sb5 2011 2sb5rf 2017 sbel2x 2026 sbexyz 2031 sbex 2032 exsb 2036 2exsb 2037 sb8eu 2067 sb8euh 2077 eu1 2079 eu2 2098 2moswapdc 2144 2exeu 2146 exists1 2150 clelab 2331 clabel 2332 sbabel 2375 rexbii2 2517 r2exf 2524 nfrexdya 2542 r19.41 2661 r19.43 2664 cbvreuvw 2744 isset 2778 rexv 2790 ceqsex2 2813 ceqsex3v 2815 gencbvex 2819 ceqsrexv 2903 rexab 2935 rexrab2 2940 euxfrdc 2959 euind 2960 reu6 2962 reu3 2963 2reuswapdc 2977 reuind 2978 sbccomlem 3073 rmo2ilem 3088 rexun 3353 reupick3 3458 abn0r 3485 abn0m 3486 rabn0m 3488 rexsns 3672 exsnrex 3675 snprc 3698 euabsn2 3702 reusn 3704 eusn 3707 elunirab 3863 unipr 3864 uniun 3869 uniin 3870 iuncom4 3934 dfiun2g 3959 iunn0m 3988 iunxiun 4009 disjnim 4035 cbvopab2 4118 cbvopab2v 4121 unopab 4123 zfnuleu 4168 0ex 4171 vnex 4175 inex1 4178 intexabim 4196 iinexgm 4198 inuni 4199 unidif0 4211 axpweq 4215 zfpow 4219 axpow2 4220 axpow3 4221 vpwex 4223 zfpair2 4254 mss 4270 exss 4271 opm 4278 eqvinop 4287 copsexg 4288 opabm 4327 iunopab 4328 zfun 4481 uniex2 4483 uniuni 4498 rexxfrd 4510 dtruex 4607 zfinf2 4637 elxp2 4693 opeliunxp 4730 xpiundi 4733 xpiundir 4734 elvvv 4738 eliunxp 4817 rexiunxp 4820 relop 4828 elco 4844 opelco2g 4846 cnvco 4863 cnvuni 4864 dfdm3 4865 dfrn2 4866 dfrn3 4867 elrng 4869 dfdm4 4870 eldm2g 4874 dmun 4885 dmin 4886 dmiun 4887 dmuni 4888 dmopab 4889 dmi 4893 dmmrnm 4897 elrn 4921 rnopab 4925 dmcosseq 4950 dmres 4980 elres 4995 elsnres 4996 dfima2 5024 elima3 5029 imadmrn 5032 imai 5038 args 5051 rniun 5093 ssrnres 5125 dmsnm 5148 dmsnopg 5154 elxp4 5170 elxp5 5171 cnvresima 5172 mptpreima 5176 dfco2 5182 coundi 5184 coundir 5185 resco 5187 imaco 5188 rnco 5189 coiun 5192 coi1 5198 coass 5201 xpcom 5229 dffun2 5281 imadif 5354 imainlem 5355 funimaexglem 5357 fun11iun 5543 f11o 5555 brprcneu 5569 nfvres 5610 fndmin 5687 abrexco 5828 imaiun 5829 dfoprab2 5992 cbvoprab2 6018 rexrnmpo 6061 opabex3d 6206 opabex3 6207 abexssex 6210 abexex 6211 oprabrexex2 6215 uchoice 6223 releldm2 6271 dfopab2 6275 dfoprab3s 6276 cnvoprab 6320 brtpos2 6337 tfr1onlemaccex 6434 tfrcllembxssdm 6442 tfrcllemaccex 6447 domen 6840 mapsnen 6903 xpsnen 6916 xpcomco 6921 xpassen 6925 fimax2gtri 6998 supelti 7104 cc1 7377 subhalfnqq 7527 ltbtwnnq 7529 prnmaxl 7601 prnminu 7602 prarloc 7616 genpdflem 7620 genpassl 7637 genpassu 7638 ltexprlemm 7713 2rexuz 9703 seq3f1olemp 10660 cbvsum 11671 cbvprod 11869 nnwosdc 12360 4sqlem12 12725 inffinp1 12800 ctiunctal 12812 unct 12813 isbasis2g 14517 tgval2 14523 ntreq0 14604 lmff 14721 metrest 14978 bj-axempty 15829 bj-axempty2 15830 bj-vprc 15832 bdinex1 15835 bj-zfpair2 15846 bj-uniex2 15852 bj-d0clsepcl 15861 |
| Copyright terms: Public domain | W3C validator |