| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbii | Unicode version | ||
| Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1628 |
. 2
| |
| 2 | exbii.1 |
. 2
| |
| 3 | 1, 2 | mpg 1475 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-4 1534 ax-ial 1558 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2exbii 1630 3exbii 1631 exancom 1632 excom13 1713 exrot4 1715 eeor 1719 sbcof2 1834 sbequ8 1871 sbidm 1875 sborv 1915 19.41vv 1928 19.41vvv 1929 19.41vvvv 1930 exdistr 1934 19.42vvv 1937 exdistr2 1939 3exdistr 1940 4exdistr 1941 eean 1960 eeeanv 1962 ee4anv 1963 2sb5 2012 2sb5rf 2018 sbel2x 2027 sbexyz 2032 sbex 2033 exsb 2037 2exsb 2038 sb8eu 2068 sb8euh 2078 eu1 2080 eu2 2100 2moswapdc 2146 2exeu 2148 exists1 2152 clelab 2333 clabel 2334 sbabel 2377 rexbii2 2519 r2exf 2526 nfrexdya 2544 r19.41 2663 r19.43 2666 cbvreuvw 2748 isset 2783 rexv 2795 ceqsex2 2818 ceqsex3v 2820 gencbvex 2824 ceqsrexv 2910 rexab 2942 rexrab2 2947 euxfrdc 2966 euind 2967 reu6 2969 reu3 2970 2reuswapdc 2984 reuind 2985 sbccomlem 3080 rmo2ilem 3096 rexun 3361 reupick3 3466 abn0r 3493 abn0m 3494 rabn0m 3496 rexsns 3682 exsnrex 3685 snprc 3708 euabsn2 3712 reusn 3714 eusn 3717 snmb 3764 elunirab 3877 unipr 3878 uniun 3883 uniin 3884 iuncom4 3948 dfiun2g 3973 iunn0m 4002 iunxiun 4023 disjnim 4049 cbvopab2 4134 cbvopab2v 4137 unopab 4139 zfnuleu 4184 0ex 4187 vnex 4191 inex1 4194 intexabim 4212 iinexgm 4214 inuni 4215 unidif0 4227 axpweq 4231 zfpow 4235 axpow2 4236 axpow3 4237 vpwex 4239 zfpair2 4270 mss 4288 exss 4289 opm 4296 eqvinop 4305 copsexg 4306 opabm 4345 iunopab 4346 zfun 4499 uniex2 4501 uniuni 4516 rexxfrd 4528 dtruex 4625 zfinf2 4655 elxp2 4711 opeliunxp 4748 xpiundi 4751 xpiundir 4752 elvvv 4756 eliunxp 4835 rexiunxp 4838 relop 4846 elco 4862 opelco2g 4864 cnvco 4881 cnvuni 4882 dfdm3 4883 dfrn2 4884 dfrn3 4885 elrng 4887 dfdm4 4889 eldm2g 4893 dmun 4904 dmin 4905 dmiun 4906 dmuni 4907 dmopab 4908 dmi 4912 dmmrnm 4916 elrn 4940 rnopab 4944 dmcosseq 4969 dmres 4999 elres 5014 elsnres 5015 dfima2 5043 elima3 5048 imadmrn 5051 imai 5057 args 5070 rniun 5112 ssrnres 5144 dmsnm 5167 dmsnopg 5173 elxp4 5189 elxp5 5190 cnvresima 5191 mptpreima 5195 dfco2 5201 coundi 5203 coundir 5204 resco 5206 imaco 5207 rnco 5208 coiun 5211 coi1 5217 coass 5220 xpcom 5248 dffun2 5300 imadif 5373 imainlem 5374 funimaexglem 5376 fun11iun 5565 f11o 5577 brprcneu 5592 nfvres 5633 fndmin 5710 abrexco 5851 imaiun 5852 dfoprab2 6015 cbvoprab2 6041 rexrnmpo 6084 opabex3d 6229 opabex3 6230 abexssex 6233 abexex 6234 oprabrexex2 6238 uchoice 6246 releldm2 6294 dfopab2 6298 dfoprab3s 6299 cnvoprab 6343 brtpos2 6360 tfr1onlemaccex 6457 tfrcllembxssdm 6465 tfrcllemaccex 6470 domen 6863 mapsnen 6927 xpsnen 6941 xpcomco 6946 xpassen 6950 fimax2gtri 7024 supelti 7130 cc1 7412 subhalfnqq 7562 ltbtwnnq 7564 prnmaxl 7636 prnminu 7637 prarloc 7651 genpdflem 7655 genpassl 7672 genpassu 7673 ltexprlemm 7748 2rexuz 9738 seq3f1olemp 10697 cbvsum 11786 cbvprod 11984 nnwosdc 12475 4sqlem12 12840 inffinp1 12915 ctiunctal 12927 unct 12928 isbasis2g 14632 tgval2 14638 ntreq0 14719 lmff 14836 metrest 15093 upgrex 15814 bj-axempty 16028 bj-axempty2 16029 bj-vprc 16031 bdinex1 16034 bj-zfpair2 16045 bj-uniex2 16051 bj-d0clsepcl 16060 |
| Copyright terms: Public domain | W3C validator |