| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbii | Unicode version | ||
| Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1650 |
. 2
| |
| 2 | exbii.1 |
. 2
| |
| 3 | 1, 2 | mpg 1497 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 ax-ial 1580 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2exbii 1652 3exbii 1653 exancom 1654 excom13 1735 exrot4 1737 eeor 1741 sbcof2 1856 sbequ8 1893 sbidm 1897 sborv 1937 19.41vv 1950 19.41vvv 1951 19.41vvvv 1952 exdistr 1956 19.42vvv 1959 exdistr2 1961 3exdistr 1962 4exdistr 1963 eean 1982 eeeanv 1984 ee4anv 1985 2sb5 2034 2sb5rf 2040 sbel2x 2049 sbexyz 2054 sbex 2055 exsb 2059 2exsb 2060 sb8eu 2090 sb8euh 2100 eu1 2102 eu2 2122 2moswapdc 2168 2exeu 2170 exists1 2174 clelab 2355 clabel 2356 sbabel 2399 rexbii2 2541 r2exf 2548 nfrexdya 2566 r19.41 2686 r19.43 2689 cbvreuvw 2771 isset 2806 rexv 2818 ceqsex2 2841 ceqsex3v 2843 gencbvex 2847 ceqsrexv 2933 rexab 2965 rexrab2 2970 euxfrdc 2989 euind 2990 reu6 2992 reu3 2993 2reuswapdc 3007 reuind 3008 sbccomlem 3103 rmo2ilem 3119 rexun 3384 reupick3 3489 abn0r 3516 abn0m 3517 rabn0m 3519 rexsns 3705 exsnrex 3708 snprc 3731 euabsn2 3735 reusn 3737 eusn 3740 snmb 3788 elunirab 3901 unipr 3902 uniun 3907 uniin 3908 iuncom4 3972 dfiun2g 3997 iunn0m 4026 iunxiun 4047 disjnim 4073 cbvopab2 4158 cbvopab2v 4161 unopab 4163 zfnuleu 4208 0ex 4211 vnex 4215 inex1 4218 intexabim 4236 iinexgm 4238 inuni 4239 unidif0 4251 axpweq 4255 zfpow 4259 axpow2 4260 axpow3 4261 vpwex 4263 zfpair2 4294 mss 4312 exss 4313 opm 4320 eqvinop 4329 copsexg 4330 opabm 4369 iunopab 4370 zfun 4525 uniex2 4527 uniuni 4542 rexxfrd 4554 dtruex 4651 zfinf2 4681 elxp2 4737 opeliunxp 4774 xpiundi 4777 xpiundir 4778 elvvv 4782 eliunxp 4861 rexiunxp 4864 relop 4872 elco 4888 opelco2g 4890 cnvco 4907 cnvuni 4908 dfdm3 4909 dfrn2 4910 dfrn3 4911 elrng 4913 dfdm4 4915 eldm2g 4919 dmun 4930 dmin 4931 dmiun 4932 dmuni 4933 dmopab 4934 dmi 4938 reldmm 4942 dmmrnm 4943 elrn 4967 rnopab 4971 dmcosseq 4996 dmres 5026 elres 5041 elsnres 5042 dfima2 5070 elima3 5075 imadmrn 5078 imai 5084 args 5097 rniun 5139 ssrnres 5171 dmsnm 5194 dmsnopg 5200 elxp4 5216 elxp5 5217 cnvresima 5218 mptpreima 5222 dfco2 5228 coundi 5230 coundir 5231 resco 5233 imaco 5234 rnco 5235 coiun 5238 coi1 5244 coass 5247 xpcom 5275 dffun2 5328 imadif 5401 imainlem 5402 funimaexglem 5404 fun11iun 5593 f11o 5605 brprcneu 5620 nfvres 5663 fndmin 5742 abrexco 5883 imaiun 5884 dfoprab2 6051 cbvoprab2 6077 rexrnmpo 6120 opabex3d 6266 opabex3 6267 abexssex 6270 abexex 6271 oprabrexex2 6275 uchoice 6283 releldm2 6331 dfopab2 6335 dfoprab3s 6336 cnvoprab 6380 brtpos2 6397 tfr1onlemaccex 6494 tfrcllembxssdm 6502 tfrcllemaccex 6507 domen 6900 mapsnen 6964 xpsnen 6980 xpcomco 6985 xpassen 6989 fimax2gtri 7063 supelti 7169 cc1 7451 subhalfnqq 7601 ltbtwnnq 7603 prnmaxl 7675 prnminu 7676 prarloc 7690 genpdflem 7694 genpassl 7711 genpassu 7712 ltexprlemm 7787 2rexuz 9777 seq3f1olemp 10737 cbvsum 11871 cbvprod 12069 nnwosdc 12560 4sqlem12 12925 inffinp1 13000 ctiunctal 13012 unct 13013 isbasis2g 14719 tgval2 14725 ntreq0 14806 lmff 14923 metrest 15180 upgrex 15903 bj-axempty 16256 bj-axempty2 16257 bj-vprc 16259 bdinex1 16262 bj-zfpair2 16273 bj-uniex2 16279 bj-d0clsepcl 16288 |
| Copyright terms: Public domain | W3C validator |