| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbii | Unicode version | ||
| Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1627 |
. 2
| |
| 2 | exbii.1 |
. 2
| |
| 3 | 1, 2 | mpg 1474 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 ax-ial 1557 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2exbii 1629 3exbii 1630 exancom 1631 excom13 1712 exrot4 1714 eeor 1718 sbcof2 1833 sbequ8 1870 sbidm 1874 sborv 1914 19.41vv 1927 19.41vvv 1928 19.41vvvv 1929 exdistr 1933 19.42vvv 1936 exdistr2 1938 3exdistr 1939 4exdistr 1940 eean 1959 eeeanv 1961 ee4anv 1962 2sb5 2011 2sb5rf 2017 sbel2x 2026 sbexyz 2031 sbex 2032 exsb 2036 2exsb 2037 sb8eu 2067 sb8euh 2077 eu1 2079 eu2 2098 2moswapdc 2144 2exeu 2146 exists1 2150 clelab 2331 clabel 2332 sbabel 2375 rexbii2 2517 r2exf 2524 nfrexdya 2542 r19.41 2661 r19.43 2664 cbvreuvw 2744 isset 2778 rexv 2790 ceqsex2 2813 ceqsex3v 2815 gencbvex 2819 ceqsrexv 2903 rexab 2935 rexrab2 2940 euxfrdc 2959 euind 2960 reu6 2962 reu3 2963 2reuswapdc 2977 reuind 2978 sbccomlem 3073 rmo2ilem 3088 rexun 3353 reupick3 3458 abn0r 3485 abn0m 3486 rabn0m 3488 rexsns 3672 exsnrex 3675 snprc 3698 euabsn2 3702 reusn 3704 eusn 3707 elunirab 3863 unipr 3864 uniun 3869 uniin 3870 iuncom4 3934 dfiun2g 3959 iunn0m 3988 iunxiun 4009 disjnim 4035 cbvopab2 4119 cbvopab2v 4122 unopab 4124 zfnuleu 4169 0ex 4172 vnex 4176 inex1 4179 intexabim 4197 iinexgm 4199 inuni 4200 unidif0 4212 axpweq 4216 zfpow 4220 axpow2 4221 axpow3 4222 vpwex 4224 zfpair2 4255 mss 4271 exss 4272 opm 4279 eqvinop 4288 copsexg 4289 opabm 4328 iunopab 4329 zfun 4482 uniex2 4484 uniuni 4499 rexxfrd 4511 dtruex 4608 zfinf2 4638 elxp2 4694 opeliunxp 4731 xpiundi 4734 xpiundir 4735 elvvv 4739 eliunxp 4818 rexiunxp 4821 relop 4829 elco 4845 opelco2g 4847 cnvco 4864 cnvuni 4865 dfdm3 4866 dfrn2 4867 dfrn3 4868 elrng 4870 dfdm4 4871 eldm2g 4875 dmun 4886 dmin 4887 dmiun 4888 dmuni 4889 dmopab 4890 dmi 4894 dmmrnm 4898 elrn 4922 rnopab 4926 dmcosseq 4951 dmres 4981 elres 4996 elsnres 4997 dfima2 5025 elima3 5030 imadmrn 5033 imai 5039 args 5052 rniun 5094 ssrnres 5126 dmsnm 5149 dmsnopg 5155 elxp4 5171 elxp5 5172 cnvresima 5173 mptpreima 5177 dfco2 5183 coundi 5185 coundir 5186 resco 5188 imaco 5189 rnco 5190 coiun 5193 coi1 5199 coass 5202 xpcom 5230 dffun2 5282 imadif 5355 imainlem 5356 funimaexglem 5358 fun11iun 5545 f11o 5557 brprcneu 5571 nfvres 5612 fndmin 5689 abrexco 5830 imaiun 5831 dfoprab2 5994 cbvoprab2 6020 rexrnmpo 6063 opabex3d 6208 opabex3 6209 abexssex 6212 abexex 6213 oprabrexex2 6217 uchoice 6225 releldm2 6273 dfopab2 6277 dfoprab3s 6278 cnvoprab 6322 brtpos2 6339 tfr1onlemaccex 6436 tfrcllembxssdm 6444 tfrcllemaccex 6449 domen 6842 mapsnen 6905 xpsnen 6918 xpcomco 6923 xpassen 6927 fimax2gtri 7000 supelti 7106 cc1 7379 subhalfnqq 7529 ltbtwnnq 7531 prnmaxl 7603 prnminu 7604 prarloc 7618 genpdflem 7622 genpassl 7639 genpassu 7640 ltexprlemm 7715 2rexuz 9705 seq3f1olemp 10662 cbvsum 11704 cbvprod 11902 nnwosdc 12393 4sqlem12 12758 inffinp1 12833 ctiunctal 12845 unct 12846 isbasis2g 14550 tgval2 14556 ntreq0 14637 lmff 14754 metrest 15011 bj-axempty 15866 bj-axempty2 15867 bj-vprc 15869 bdinex1 15872 bj-zfpair2 15883 bj-uniex2 15889 bj-d0clsepcl 15898 |
| Copyright terms: Public domain | W3C validator |