Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > exbii | Unicode version |
Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
Ref | Expression |
---|---|
exbii.1 |
Ref | Expression |
---|---|
exbii |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exbi 1581 | . 2 | |
2 | exbii.1 | . 2 | |
3 | 1, 2 | mpg 1428 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wex 1469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-4 1487 ax-ial 1511 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: 2exbii 1583 3exbii 1584 exancom 1585 excom13 1666 exrot4 1668 eeor 1672 sbcof2 1787 sbequ8 1824 sbidm 1828 sborv 1867 19.41vv 1880 19.41vvv 1881 19.41vvvv 1882 exdistr 1886 19.42vvv 1889 exdistr2 1891 3exdistr 1892 4exdistr 1893 eean 1908 eeeanv 1910 ee4anv 1911 2sb5 1960 2sb5rf 1966 sbel2x 1975 sbexyz 1980 sbex 1981 exsb 1985 2exsb 1986 sb8eu 2016 sb8euh 2026 eu1 2028 eu2 2047 2moswapdc 2093 2exeu 2095 exists1 2099 clelab 2280 clabel 2281 sbabel 2323 rexbii2 2465 r2exf 2472 nfrexdya 2490 r19.41 2609 r19.43 2612 cbvreuvw 2683 isset 2715 rexv 2727 ceqsex2 2749 ceqsex3v 2751 gencbvex 2755 ceqsrexv 2839 rexab 2870 rexrab2 2875 euxfrdc 2894 euind 2895 reu6 2897 reu3 2898 2reuswapdc 2912 reuind 2913 sbccomlem 3007 rmo2ilem 3022 rexun 3283 reupick3 3388 abn0r 3414 abn0m 3415 rabn0m 3417 rexsns 3594 exsnrex 3597 snprc 3620 euabsn2 3624 reusn 3626 eusn 3629 elunirab 3781 unipr 3782 uniun 3787 uniin 3788 iuncom4 3852 dfiun2g 3877 iunn0m 3905 iunxiun 3926 disjnim 3952 cbvopab2 4034 cbvopab2v 4037 unopab 4039 zfnuleu 4084 0ex 4087 vnex 4091 inex1 4094 intexabim 4109 iinexgm 4111 inuni 4112 unidif0 4123 axpweq 4127 zfpow 4131 axpow2 4132 axpow3 4133 vpwex 4135 zfpair2 4165 mss 4181 exss 4182 opm 4189 eqvinop 4198 copsexg 4199 opabm 4235 iunopab 4236 zfun 4389 uniex2 4391 uniuni 4405 rexxfrd 4417 dtruex 4512 zfinf2 4542 elxp2 4597 opeliunxp 4634 xpiundi 4637 xpiundir 4638 elvvv 4642 eliunxp 4718 rexiunxp 4721 relop 4729 elco 4745 opelco2g 4747 cnvco 4764 cnvuni 4765 dfdm3 4766 dfrn2 4767 dfrn3 4768 elrng 4770 dfdm4 4771 eldm2g 4775 dmun 4786 dmin 4787 dmiun 4788 dmuni 4789 dmopab 4790 dmi 4794 dmmrnm 4798 elrn 4822 rnopab 4826 dmcosseq 4850 dmres 4880 elres 4895 elsnres 4896 dfima2 4923 elima3 4928 imadmrn 4931 imai 4935 args 4948 rniun 4989 ssrnres 5021 dmsnm 5044 dmsnopg 5050 elxp4 5066 elxp5 5067 cnvresima 5068 mptpreima 5072 dfco2 5078 coundi 5080 coundir 5081 resco 5083 imaco 5084 rnco 5085 coiun 5088 coi1 5094 coass 5097 xpcom 5125 dffun2 5173 imadif 5243 imainlem 5244 funimaexglem 5246 fun11iun 5428 f11o 5440 brprcneu 5454 nfvres 5494 fndmin 5567 abrexco 5700 imaiun 5701 dfoprab2 5858 cbvoprab2 5884 rexrnmpo 5926 opabex3d 6059 opabex3 6060 abexssex 6063 abexex 6064 oprabrexex2 6068 releldm2 6123 dfopab2 6127 dfoprab3s 6128 cnvoprab 6171 brtpos2 6188 tfr1onlemaccex 6285 tfrcllembxssdm 6293 tfrcllemaccex 6298 domen 6685 mapsnen 6745 xpsnen 6755 xpcomco 6760 xpassen 6764 fimax2gtri 6835 supelti 6934 cc1 7164 subhalfnqq 7313 ltbtwnnq 7315 prnmaxl 7387 prnminu 7388 prarloc 7402 genpdflem 7406 genpassl 7423 genpassu 7424 ltexprlemm 7499 2rexuz 9472 seq3f1olemp 10379 cbvsum 11234 cbvprod 11432 inffinp1 12109 ctiunctal 12121 unct 12122 isbasis2g 12382 tgval2 12390 ntreq0 12471 lmff 12588 metrest 12845 bj-axempty 13406 bj-axempty2 13407 bj-vprc 13409 bdinex1 13412 bj-zfpair2 13423 bj-uniex2 13429 bj-d0clsepcl 13438 |
Copyright terms: Public domain | W3C validator |