| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > exbii | Unicode version | ||
| Description: Inference adding existential quantifier to both sides of an equivalence. (Contributed by NM, 24-May-1994.) |
| Ref | Expression |
|---|---|
| exbii.1 |
|
| Ref | Expression |
|---|---|
| exbii |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exbi 1618 |
. 2
| |
| 2 | exbii.1 |
. 2
| |
| 3 | 1, 2 | mpg 1465 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 ax-ial 1548 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: 2exbii 1620 3exbii 1621 exancom 1622 excom13 1703 exrot4 1705 eeor 1709 sbcof2 1824 sbequ8 1861 sbidm 1865 sborv 1905 19.41vv 1918 19.41vvv 1919 19.41vvvv 1920 exdistr 1924 19.42vvv 1927 exdistr2 1929 3exdistr 1930 4exdistr 1931 eean 1950 eeeanv 1952 ee4anv 1953 2sb5 2002 2sb5rf 2008 sbel2x 2017 sbexyz 2022 sbex 2023 exsb 2027 2exsb 2028 sb8eu 2058 sb8euh 2068 eu1 2070 eu2 2089 2moswapdc 2135 2exeu 2137 exists1 2141 clelab 2322 clabel 2323 sbabel 2366 rexbii2 2508 r2exf 2515 nfrexdya 2533 r19.41 2652 r19.43 2655 cbvreuvw 2735 isset 2769 rexv 2781 ceqsex2 2804 ceqsex3v 2806 gencbvex 2810 ceqsrexv 2894 rexab 2926 rexrab2 2931 euxfrdc 2950 euind 2951 reu6 2953 reu3 2954 2reuswapdc 2968 reuind 2969 sbccomlem 3064 rmo2ilem 3079 rexun 3343 reupick3 3448 abn0r 3475 abn0m 3476 rabn0m 3478 rexsns 3661 exsnrex 3664 snprc 3687 euabsn2 3691 reusn 3693 eusn 3696 elunirab 3852 unipr 3853 uniun 3858 uniin 3859 iuncom4 3923 dfiun2g 3948 iunn0m 3977 iunxiun 3998 disjnim 4024 cbvopab2 4107 cbvopab2v 4110 unopab 4112 zfnuleu 4157 0ex 4160 vnex 4164 inex1 4167 intexabim 4185 iinexgm 4187 inuni 4188 unidif0 4200 axpweq 4204 zfpow 4208 axpow2 4209 axpow3 4210 vpwex 4212 zfpair2 4243 mss 4259 exss 4260 opm 4267 eqvinop 4276 copsexg 4277 opabm 4315 iunopab 4316 zfun 4469 uniex2 4471 uniuni 4486 rexxfrd 4498 dtruex 4595 zfinf2 4625 elxp2 4681 opeliunxp 4718 xpiundi 4721 xpiundir 4722 elvvv 4726 eliunxp 4805 rexiunxp 4808 relop 4816 elco 4832 opelco2g 4834 cnvco 4851 cnvuni 4852 dfdm3 4853 dfrn2 4854 dfrn3 4855 elrng 4857 dfdm4 4858 eldm2g 4862 dmun 4873 dmin 4874 dmiun 4875 dmuni 4876 dmopab 4877 dmi 4881 dmmrnm 4885 elrn 4909 rnopab 4913 dmcosseq 4937 dmres 4967 elres 4982 elsnres 4983 dfima2 5011 elima3 5016 imadmrn 5019 imai 5025 args 5038 rniun 5080 ssrnres 5112 dmsnm 5135 dmsnopg 5141 elxp4 5157 elxp5 5158 cnvresima 5159 mptpreima 5163 dfco2 5169 coundi 5171 coundir 5172 resco 5174 imaco 5175 rnco 5176 coiun 5179 coi1 5185 coass 5188 xpcom 5216 dffun2 5268 imadif 5338 imainlem 5339 funimaexglem 5341 fun11iun 5525 f11o 5537 brprcneu 5551 nfvres 5592 fndmin 5669 abrexco 5806 imaiun 5807 dfoprab2 5969 cbvoprab2 5995 rexrnmpo 6038 opabex3d 6178 opabex3 6179 abexssex 6182 abexex 6183 oprabrexex2 6187 uchoice 6195 releldm2 6243 dfopab2 6247 dfoprab3s 6248 cnvoprab 6292 brtpos2 6309 tfr1onlemaccex 6406 tfrcllembxssdm 6414 tfrcllemaccex 6419 domen 6810 mapsnen 6870 xpsnen 6880 xpcomco 6885 xpassen 6889 fimax2gtri 6962 supelti 7068 cc1 7332 subhalfnqq 7481 ltbtwnnq 7483 prnmaxl 7555 prnminu 7556 prarloc 7570 genpdflem 7574 genpassl 7591 genpassu 7592 ltexprlemm 7667 2rexuz 9656 seq3f1olemp 10607 cbvsum 11525 cbvprod 11723 nnwosdc 12206 4sqlem12 12571 inffinp1 12646 ctiunctal 12658 unct 12659 isbasis2g 14281 tgval2 14287 ntreq0 14368 lmff 14485 metrest 14742 bj-axempty 15539 bj-axempty2 15540 bj-vprc 15542 bdinex1 15545 bj-zfpair2 15556 bj-uniex2 15562 bj-d0clsepcl 15571 |
| Copyright terms: Public domain | W3C validator |