| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > nfex | Unicode version | ||
| Description: If  | 
| Ref | Expression | 
|---|---|
| nfex.1 | 
 | 
| Ref | Expression | 
|---|---|
| nfex | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfex.1 | 
. . . 4
 | |
| 2 | 1 | nfri 1533 | 
. . 3
 | 
| 3 | 2 | hbex 1650 | 
. 2
 | 
| 4 | 3 | nfi 1476 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:    | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 | 
| This theorem is referenced by: eeor 1709 cbvexv1 1766 cbvex2 1937 eean 1950 nfsbv 1966 nfeu1 2056 nfeuv 2063 nfel 2348 ceqsex2 2804 nfopab 4101 nfopab2 4103 cbvopab1 4106 cbvopab1s 4108 repizf2 4195 copsex2t 4278 copsex2g 4279 euotd 4287 onintrab2im 4554 mosubopt 4728 nfco 4831 dfdmf 4859 dfrnf 4907 nfdm 4910 fv3 5581 nfoprab2 5972 nfoprab3 5973 nfoprab 5974 cbvoprab1 5994 cbvoprab2 5995 cbvoprab3 5998 cnvoprab 6292 ac6sfi 6959 cc3 7335 nfsum1 11521 nfsum 11522 fsum2dlemstep 11599 nfcprod1 11719 nfcprod 11720 fprod2dlemstep 11787 lss1d 13939 | 
| Copyright terms: Public domain | W3C validator |