| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfex | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfex.1 |
|
| Ref | Expression |
|---|---|
| nfex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfex.1 |
. . . 4
| |
| 2 | 1 | nfri 1533 |
. . 3
|
| 3 | 2 | hbex 1650 |
. 2
|
| 4 | 3 | nfi 1476 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-4 1524 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 |
| This theorem is referenced by: eeor 1709 cbvexv1 1766 cbvex2 1937 eean 1950 nfsbv 1966 nfeu1 2056 nfeuv 2063 nfel 2348 ceqsex2 2804 nfopab 4102 nfopab2 4104 cbvopab1 4107 cbvopab1s 4109 repizf2 4196 copsex2t 4279 copsex2g 4280 euotd 4288 onintrab2im 4555 mosubopt 4729 nfco 4832 dfdmf 4860 dfrnf 4908 nfdm 4911 fv3 5584 nfoprab2 5976 nfoprab3 5977 nfoprab 5978 cbvoprab1 5998 cbvoprab2 5999 cbvoprab3 6002 cnvoprab 6301 ac6sfi 6968 cc3 7351 nfsum1 11538 nfsum 11539 fsum2dlemstep 11616 nfcprod1 11736 nfcprod 11737 fprod2dlemstep 11804 lss1d 14015 |
| Copyright terms: Public domain | W3C validator |