| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfex | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfex.1 |
|
| Ref | Expression |
|---|---|
| nfex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfex.1 |
. . . 4
| |
| 2 | 1 | nfri 1542 |
. . 3
|
| 3 | 2 | hbex 1659 |
. 2
|
| 4 | 3 | nfi 1485 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-4 1533 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 |
| This theorem is referenced by: eeor 1718 cbvexv1 1775 cbvex2 1946 eean 1959 nfsbv 1975 nfeu1 2065 nfeuv 2072 nfel 2357 ceqsex2 2813 nfopab 4113 nfopab2 4115 cbvopab1 4118 cbvopab1s 4120 repizf2 4207 copsex2t 4290 copsex2g 4291 euotd 4300 onintrab2im 4567 mosubopt 4741 nfco 4844 dfdmf 4872 dfrnf 4920 nfdm 4923 fv3 5601 nfoprab2 5997 nfoprab3 5998 nfoprab 5999 cbvoprab1 6019 cbvoprab2 6020 cbvoprab3 6023 cnvoprab 6322 ac6sfi 6997 cc3 7382 nfsum1 11700 nfsum 11701 fsum2dlemstep 11778 nfcprod1 11898 nfcprod 11899 fprod2dlemstep 11966 lss1d 14178 |
| Copyright terms: Public domain | W3C validator |