| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nfex | Unicode version | ||
| Description: If |
| Ref | Expression |
|---|---|
| nfex.1 |
|
| Ref | Expression |
|---|---|
| nfex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfex.1 |
. . . 4
| |
| 2 | 1 | nfri 1565 |
. . 3
|
| 3 | 2 | hbex 1682 |
. 2
|
| 4 | 3 | nfi 1508 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-4 1556 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 |
| This theorem is referenced by: eeor 1741 cbvexv1 1798 cbvex2 1969 eean 1982 nfsbv 1998 nfeu1 2088 nfeuv 2095 nfel 2381 ceqsex2 2841 nfopab 4152 nfopab2 4154 cbvopab1 4157 cbvopab1s 4159 repizf2 4246 copsex2t 4331 copsex2g 4332 euotd 4341 onintrab2im 4610 mosubopt 4784 nfco 4887 dfdmf 4916 dfrnf 4965 nfdm 4968 fv3 5650 nfoprab2 6054 nfoprab3 6055 nfoprab 6056 cbvoprab1 6076 cbvoprab2 6077 cbvoprab3 6080 cnvoprab 6380 ac6sfi 7060 cc3 7454 nfsum1 11867 nfsum 11868 fsum2dlemstep 11945 nfcprod1 12065 nfcprod 12066 fprod2dlemstep 12133 lss1d 14347 |
| Copyright terms: Public domain | W3C validator |