ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eeor GIF version

Theorem eeor 1688
Description: Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.)
Hypotheses
Ref Expression
eeor.1 𝑦𝜑
eeor.2 𝑥𝜓
Assertion
Ref Expression
eeor (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓))

Proof of Theorem eeor
StepHypRef Expression
1 eeor.1 . . . 4 𝑦𝜑
2119.45 1676 . . 3 (∃𝑦(𝜑𝜓) ↔ (𝜑 ∨ ∃𝑦𝜓))
32exbii 1598 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∨ ∃𝑦𝜓))
4 eeor.2 . . . 4 𝑥𝜓
54nfex 1630 . . 3 𝑥𝑦𝜓
6519.44 1675 . 2 (∃𝑥(𝜑 ∨ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓))
73, 6bitri 183 1 (∃𝑥𝑦(𝜑𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓))
Colors of variables: wff set class
Syntax hints:  wb 104  wo 703  wnf 1453  wex 1485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-4 1503  ax-ial 1527
This theorem depends on definitions:  df-bi 116  df-nf 1454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator