Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eeor | GIF version |
Description: Rearrange existential quantifiers. (Contributed by NM, 8-Aug-1994.) |
Ref | Expression |
---|---|
eeor.1 | ⊢ Ⅎ𝑦𝜑 |
eeor.2 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
eeor | ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eeor.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | 1 | 19.45 1676 | . . 3 ⊢ (∃𝑦(𝜑 ∨ 𝜓) ↔ (𝜑 ∨ ∃𝑦𝜓)) |
3 | 2 | exbii 1598 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ ∃𝑥(𝜑 ∨ ∃𝑦𝜓)) |
4 | eeor.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
5 | 4 | nfex 1630 | . . 3 ⊢ Ⅎ𝑥∃𝑦𝜓 |
6 | 5 | 19.44 1675 | . 2 ⊢ (∃𝑥(𝜑 ∨ ∃𝑦𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
7 | 3, 6 | bitri 183 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑦𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 703 Ⅎwnf 1453 ∃wex 1485 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-4 1503 ax-ial 1527 |
This theorem depends on definitions: df-bi 116 df-nf 1454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |