ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  neeqtrrd Unicode version

Theorem neeqtrrd 2408
Description: Substitution of equal classes into an inequality. (Contributed by NM, 4-Jul-2012.)
Hypotheses
Ref Expression
neeqtrrd.1  |-  ( ph  ->  A  =/=  B )
neeqtrrd.2  |-  ( ph  ->  C  =  B )
Assertion
Ref Expression
neeqtrrd  |-  ( ph  ->  A  =/=  C )

Proof of Theorem neeqtrrd
StepHypRef Expression
1 neeqtrrd.1 . 2  |-  ( ph  ->  A  =/=  B )
2 neeqtrrd.2 . . 3  |-  ( ph  ->  C  =  B )
32eqcomd 2213 . 2  |-  ( ph  ->  B  =  C )
41, 3neeqtrd 2406 1  |-  ( ph  ->  A  =/=  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    =/= wne 2378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-5 1471  ax-gen 1473  ax-4 1534  ax-17 1550  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-cleq 2200  df-ne 2379
This theorem is referenced by:  frecabcl  6508  expnprm  12791
  Copyright terms: Public domain W3C validator